The simple polyol, myo-inositol, is used as a building block of a cellular language that plays various roles in signal transduction. This review describes the terminology used to denote myo-inositol-containing molecules, with an emphasis on how phosphate and fatty acids are added to create second messengers used in signaling. Work in model systems has delineated the genes and enzymes required for synthesis and metabolism of many myo-inositol-containing molecules, with genetic mutants and measurement of second messengers playing key roles in developing our understanding. There is increasing evidence that molecules such as myo- inositol(1,4,5)trisphosphate and phosphatidylinositol(4,5)bisphosphate are synthesized in response to various signals plants encounter. In particular, the controversial role of myo-inositol(1,4,5)trisphosphate is addressed, accompanied by a discussion of the multiple enzymes that act to regulate this molecule. We are also beginning to understand new connections of myo-inositol signaling in plants. These recent discoveries include the novel roles of inositol phosphates in binding to plant hormone receptors and that of phosphatidylinositol(3)phosphate binding to pathogen effectors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1469-8137.2011.03939.x | DOI Listing |
Biochem Biophys Res Commun
January 2025
Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China. Electronic address:
The death of retinal ganglion cells (RGCs) is a key factor in the pathophysiology of all forms of glaucoma. RGC culture serves as a simple system for establishing and testing candidate therapies. This study aimed to explore the differentiation of primary retinal progenitor cells (RPCs) into RGC-like cells induced by low-dose cytarabine (Ara-C).
View Article and Find Full Text PDFBrain Behav
January 2025
Department of Internal Medicine, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey.
Objective: Cognitive impairment is increasingly recognized as a complication of diabetes, yet the underlying pathology remains unclear. This study aims to investigate the roles of inflammation, oxidative stress, endothelial dysfunction, and neuronal damage in the neuropathology underlying diabetes related cognitive impairment.
Methods: This study assessed 183 participants (54 prediabetes, 71 Type 2 diabetes mellitus [T2DM], and 58 controls) for cognitive performance using the Montreal Cognitive Assessment (MoCA).
J Trace Elem Med Biol
January 2025
Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences Bahawalpur, 63100, Pakistan. Electronic address:
Background: Boron, a naturally abundant trace element, plays a crucial role in various biological processes and influences important physiological functions such as bone health, immune response, and cellular metabolism. Its applications span diverse scientific fields including anatomy, pharmacology, reproduction, medicine, and agriculture.
Objectives: This review examines the diverse functions of boron-compounds in biological systems and highlights their therapeutic potential, challenges associated with toxicity, and mechanisms underlying their biological interactions.
Clin Adv Periodontics
January 2025
Private Practice, Florence, Italy.
Background: The periosteum consists of an outer fibrous layer and an inner cellular layer, where bone cells reside. Hence, it has been suggested that applying periosteum to a periodontal defect may help new bone formation. The purpose of this case study is to present the clinical and radiographic outcomes of a vestibular regenerative approach and the application of a connective tissue graft (CTG) with periosteum to improve the periodontal prognosis of a pathologically migrated hopeless tooth with an endo-periodontal lesion (EPL).
View Article and Find Full Text PDFExp Mol Med
January 2025
Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
Th17 cells are activated by STAT3 factors in the nucleus, and these factors are correlated with the pathologic progression of rheumatoid arthritis (RA). Recent studies have demonstrated the presence of STAT3 in mitochondria, but its function is unclear. We investigated the novel role of mitochondrial STAT3 (mitoSTAT3) in Th17 cells and fibroblast-like synoviocytes (FLSs) and analyzed the correlation of mitoSTAT3 with RA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!