This study tests four different types of multiphase models to determine the most appropriate model for predicting the behaviors of various types of storm water solids in a settling chamber. The Lagrangian reference frame discrete phase models of uncoupled and coupled models based on the interaction between the discrete phase and the continuous phase were tested. The rigid moving objects model providing six degrees of freedom particle motion was also tested to model non-spherical particle motion. The fourth model was a sediment transport model using the Eulerian reference frame model. This study tested five different storm water solids consisting of bulk, gross, coarse, sediment and fine which are classified by particle size and settling characteristics. Particle settling efficiency and computational time were considered in determining the most appropriate multiphase model. The coupled model provided better solid settling than the uncoupled model, but required 8.2% more computational time in this study. The Eulerian model matched settling efficiency for the high density finer solids. Although the Eulerian model showed reliable settling prediction, the Lagrangian coupled model can be an effective alternative requiring significantly reduced computational time.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2011.638DOI Listing

Publication Analysis

Top Keywords

storm water
16
water solids
12
model
12
computational time
12
settling chamber
8
reference frame
8
discrete phase
8
particle motion
8
settling efficiency
8
coupled model
8

Similar Publications

Global declines in wild mussel populations and production have been linked to the impacts of climate change and pollution. Summer die-offs of mussels (Perna canaliculus), spat retention issues, and a severe decline in mussel spat settlement have been reported in the Marlborough Sounds, an important area for mussel farming in New Zealand. Preliminary evidence suggests that naturally occurring contaminants and changing land use in the surrounding areas, could contribute to the decline of this species.

View Article and Find Full Text PDF

Antimicrobial resistant Enterobacterales of clinical importance in mute swans.

Sci Total Environ

January 2025

Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Centre for One Health, University of Galway, Ireland.

Urban water environments, including canals, harbours and estuaries are susceptible to contamination with antimicrobials and drug-resistant bacteria through domestic and industrial wastewater discharges and storm water overflows. There is potential for wildlife using these waters to acquire and transmit drug-resistant bacteria and antimicrobial resistance genes (ARGs) of clinical importance. This study aimed to assess clinically important drug-resistant bacteria in urban waterfowl, particularly mute swans.

View Article and Find Full Text PDF

The influence of subtidal Laminaria canopies on local environmental conditions and the structure of understorey communities.

Mar Environ Res

January 2025

Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, PlySmouth, PL1 2PB, UK. Electronic address:

Understanding the role of species interactions (e.g. competition and facilitation) in structuring communities is a fundamental goal of ecology.

View Article and Find Full Text PDF

Quantifying the Impact of Soil Moisture Sensor Measurements in Determining Green Stormwater Infrastructure Performance.

Sensors (Basel)

December 2024

Department of Civil and Environmental Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA.

The ability to track moisture content using soil moisture sensors in green stormwater infrastructure (GSI) systems allows us to understand the system's water management capacity and recovery. Soil moisture sensors have been used to quantify infiltration and evapotranspiration in GSI practices both preceding, during, and following storm events. Although useful, soil-specific calibration is often needed for soil moisture sensors, as small measurement variations can result in misinterpretation of the water budget and associated GSI performance.

View Article and Find Full Text PDF

Respiratory and hematological physiology of day 15 chicken embryos (Gallus gallus domesticus) during water submergence and air recovery: Implications for bird embryos experiencing nest inundation.

Comp Biochem Physiol A Mol Integr Physiol

January 2025

Developmental Integrative Biology, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, United States of America.

Bird nests of coastal or inland breeding birds can temporarily flood during high tides or storms. However, respiratory physiological disruption of such water submersion and implications for post-submergence survival are poorly understood. We hypothesized that respiratory physiological disturbances caused by submersion would be rapidly corrected following return to normal gas exchange across the eggshell, thus explaining survival of nest inundation in the field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!