The paper presents the detailed design and some preliminary results obtained from a study regarding a wastewater treatment pilot plant (WWTPP), serving as a multistage constructed wetland (CW) located at the rural settlement of 'Chorfech 24' (Tunisia). The WWTPP implemented at Chorfech 24 is mainly designed as a demonstration of sustainable water management solutions (low-cost wastewater treatment), in order to prove the efficiency of these solutions working under real Tunisian conditions and ultimately allow the further spreading of the demonstrated techniques. The pilot activity also aims to help gain experience with the implemented techniques and to improve them when necessary to be recommended for wide application in rural settlements in Tunisia and similar situations worldwide. The selected WWTPP at Chorfech 24 (rural settlement of 50 houses counting 350 inhabitants) consists of one Imhoff tank for pre-treatment, and three stages in series: as first stage a horizontal subsurface flow CW system, as second stage a subsurface vertical flow CW system, and a third horizontal flow CW. The sludge of the Imhoff tank is treated in a sludge composting bed. The performances of the different components as well as the whole treatment system were presented based on 3 months monitoring. The results shown in this paper are related to carbon, nitrogen and phosphorus removal as well as to reduction of micro-organisms. The mean overall removal rates of the Chorfech WWTPP during the monitored period have been, respectively, equal to 97% for total suspended solids and biochemical oxygen demand (BOD5), 95% for chemical oxygen demand, 71% for total nitrogen and 82% for P-PO4. The removal of E. coli by the whole system is 2.5 log units.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2011.563DOI Listing

Publication Analysis

Top Keywords

wastewater treatment
16
constructed wetland
8
rural settlements
8
treatment pilot
8
pilot plant
8
rural settlement
8
imhoff tank
8
flow system
8
oxygen demand
8
treatment
5

Similar Publications

Treated municipal wastewater effluent is an important pathway for Contaminants of Emerging Concern (CEC) to enter aquatic ecosystems. As the aging wastewater infrastructure in many industrialized countries requires upgrades or replacement, assessing new treatment technologies in the context of CEC effects may provide additional support for science-based resource management. Here, we used three lines of evidence, analytical chemistry, fish exposure experiments, and fish and water microbiome analysis, to assess the effectiveness of membrane bioreactor treatment (MBR) to replace traditional activated sludge treatment.

View Article and Find Full Text PDF

Effects of UVC doses on the removal of antimicrobial resistance elements from secondary treated sewage.

Environ Sci Pollut Res Int

January 2025

Programa de Pós-Graduação Em Saneamento, Meio Ambiente E Recursos Hídricos, Departamento de Engenharia Sanitária E Ambiental, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.

Wastewater treatment plants (WWTPs) currently face major challenges toward the removal of microcontaminants and/or microbial matrices and consequently play an important role in the potential dissemination of biological resistance in freshwater. The ultraviolet (UV) system is a tertiary treatment strategy increasingly applied worldwide, although many studies have shown that disinfected effluent can still contain antibiotic-resistant bacteria and resistance genes. Therefore, to better understand the effects of UV radiation doses on the removal of all resistance elements (antibiotics, antibiotic-resistant bacteria, and antibiotic resistance genes), the present study was designed using a pilot-scale photoreactor.

View Article and Find Full Text PDF

Membrane bioreactors (MBRs) have been widely used in the field of wastewater treatment because of their small footprint and high treatment efficiency. In this research, 10 rural wastewater treatment sites in China that employ the MBR process were systematically studied. Specifically, treatment of actual domestic wastewater using MBRs was examined by high-throughput 16S rRNA gene sequencing to explore the microbial community composition and perform function prediction.

View Article and Find Full Text PDF

Microbial fuel cell (MFC) technology has received increased interest as a suitable approach for treating wastewater while producing electricity. However, there remains a lack of studies investigating the impact of inoculum type and hydraulic retention time (HRT) on the efficiency of MFCs in treating industrial saline wastewater. The effect of three different inocula (activated sludge from a fish-canning industry and two domestic wastewater treatment plants, WWTPs) on electrochemical and physicochemical parameters and the anodic microbiome of a two-chambered continuous-flow MFC was studied.

View Article and Find Full Text PDF

Risk characterization of organic micropollutants in public wastewater treatment plant effluents in Flanders, Belgium.

Integr Environ Assess Manag

January 2025

GhEnToxLab, Department of Animal Science and Aquatic Ecology, Ghent University, Ghent, Belgium.

This study investigates the ecological risks posed by organic micropollutants (OMPs) in wastewater treatment plant (WWTP) effluents in Flanders, Belgium based on single-compound risk characterization. Utilizing a five-year monitoring dataset from the Flemish Environment Agency (VMM) and employing seven ecological threshold values (ETV) types, this research characterizes the risk of 207 OMPs, including pharmaceuticals, pesticides, industrial chemicals, and other pollutants. Several OMPs persist in effluents at concentrations that pose significant ecological risks after secondary and tertiary treatment processes in the region of Flanders (Belgium).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!