The annulus fibrosus of the intervertebral disc is a complex, radial-ply connective tissue consisting of concentric lamellae of oriented collagen. Whilst much is known of the structure of the mature annulus, less is known of how its complex collagenous architecture becomes established; an understanding of which could inform future repair/regenerative strategies. Here, using a rat disc developmental series, we describe events in the establishment of the collagenous framework of the annulus at light and electron microscopic levels and examine the involvement of class I and II small leucine rich proteoglycans (SLRPs) in the matrix assembly process. We show that a period of sustained, ordered matrix deposition follows the initial cellular differentiation/orientation phase within the foetal disc. Fibrillar matrix is deposited from recesses within the plasma membrane into compartments of interstitial space within the outer annulus - the orientation of the secreted collagen reflecting the initial cellular orientation of the laminae. Medially, we demonstrate the development of a reinforcing 'cage' of collagen fibre bundles around the foetal nucleus pulpous. This derives from the fusion of collagen bundles between presumptive end-plate and inner annulus. By birth, the distinct collagenous architectures are established and the disc undergoes considerable enlargement to maturity. We show that fibromodulin plays a prominent role in foetal development of the annulus and its attachment to vertebral bodies. With the exception of keratocan, the other SLRPs appear associated more with cartilage development within the vertebral column, but all become more prominent within the disc during its growth and differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.22203/ecm.v022a18 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
SOX9 is a crucial transcriptional regulator of cartilage development and homeostasis. Dysregulation of is associated with a wide spectrum of skeletal disorders, including campomelic dysplasia, acampomelic campomelic dysplasia, and scoliosis. Yet how variants contribute to the spectrum of axial skeletal disorders is not well understood.
View Article and Find Full Text PDFAnal Sci
January 2025
Chitose Institute of Science and Technology, Chitose, Hokkaido, 066-8655, Japan.
Cartilage is a connective tissue composed of mainly water, collagen (COL) and proteoglycans (PGs) including chondroitin sulfate (CS). Near-infrared (NIR) spectroscopy is adequate for examination of soft and hard tissues with large amount of water non-destructively and non-invasively. We measured tablets containing CS and COL using NIR spectroscopy to develop an evaluation method for PGs in cartilage non-destructively and non-invasively.
View Article and Find Full Text PDFJ Cardiovasc Dev Dis
December 2024
Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan.
Purpose: This study evaluates the use of deep learning techniques to automatically extract and delineate the aortic valve annulus region from contrast-enhanced cardiac CT images. Two approaches, namely, segmentation and object detection, were compared to determine their accuracy.
Materials And Methods: A dataset of 32 contrast-enhanced cardiac CT scans was analyzed.
J Cardiol Cases
October 2024
Department of Cardiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
Unlabelled: Mitral annular calcification (MAC) is a chronic degenerative process involving the fibrous support structure of the mitral valve. The prevalence of this condition significantly increases with age, and is higher in patients with cardiovascular risk factors or end-stage renal disease. However, patients with systemic lupus erythematosus (SLE) may develop atherosclerosis and MAC at a relatively young age.
View Article and Find Full Text PDFThe meniscus effect in cell culture vessels limits the observable areas with phase contrast microscopy. For meniscus effect compensation in microtiter plates (MTPs), we present a method using an LCD to replace the fixed condenser annulus, which enables adaptive annulus shifting based on image analysis. This approach led to an increase in phase contrast area by a factor of 8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!