Sleep, vigilance, and thermosensitivity.

Pflugers Arch

Department of Sleep & Cognition, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.

Published: January 2012

The regulation of sleep and wakefulness is well modeled with two underlying processes: a circadian and a homeostatic one. So far, the parameters and mechanisms of additional sleep-permissive and wake-promoting conditions have been largely overlooked. The present overview focuses on one of these conditions: the effect of skin temperature on the onset and maintenance of sleep, and alertness. Skin temperature is quite well suited to provide the brain with information on sleep-permissive and wake-promoting conditions because it changes with most if not all of them. Skin temperature changes with environmental heat and cold, but also with posture, environmental light, danger, nutritional status, pain, and stress. Its effect on the brain may thus moderate the efficacy by which the clock and homeostat manage to initiate or maintain sleep or wakefulness. The review provides a brief overview of the neuroanatomical pathways and physiological mechanisms by which skin temperature can affect the regulation of sleep and vigilance. In addition, current pitfalls and possibilities of practical applications for sleep enhancement are discussed, including the recent finding of impaired thermal comfort perception in insomniacs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256315PMC
http://dx.doi.org/10.1007/s00424-011-1042-2DOI Listing

Publication Analysis

Top Keywords

skin temperature
16
sleep vigilance
8
regulation sleep
8
sleep wakefulness
8
sleep-permissive wake-promoting
8
wake-promoting conditions
8
sleep
6
vigilance thermosensitivity
4
thermosensitivity regulation
4
wakefulness well
4

Similar Publications

Mechanical and thermal responsive chiral photonic cellulose hydrogels for dynamic anti-counterfeiting and optical skin.

Mater Horiz

January 2025

Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.

Dynamic responsive structural colored materials have drawn increased consideration in a wide range of applications, such as colorimetric sensors and high-safety tags. However, the sophisticated interactions among the individual responsive parts restrict the advanced design of multimodal responsive photonic materials. Inspired by stimuli-responsive color change in chameleon skin, a simple and effective photo-crosslinking strategy is proposed to construct hydroxypropyl cellulose (HPC) based hydrogels with multiple responsive structured colors.

View Article and Find Full Text PDF

Wearable sensors with multiple functions are attracting significant attention due to their broad applications in health monitoring and human-computer interaction. Despite significant progress in wearable sensors, it is a significant challenge to monitor temperature and stress simultaneously with a single sensor. A wearable multifunctional optical sensor based on Er/Yb co-doped GdO nanoparticles and a tapered U-shaped fiber is proposed to monitor both temperature and stress in this paper.

View Article and Find Full Text PDF

Tough, highly conductive and frost-resistant chitosan based hydrogel for flexible sensor.

Int J Biol Macromol

January 2025

School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China. Electronic address:

Conductive hydrogels with exceptional mechanical properties have received extensive attention in flexible strain sensors. However, there is still a huge challenge in the preparation of hydrogels with high toughness, conductivity and frost resistance performance. In this study, the prepared PA-PAAM-CS (PPAC) composite hydrogels were obtained by incorporating phytic acid (PA) and chitosan (CS) into poly(acrylamide-co-stearyl methacrylate) (PAAM) polymer network.

View Article and Find Full Text PDF

Background: Although the association of peripheral skin temperature with infection, serious illness and death have been recognised for centuries, few studies have explicitly compared this finding with other bedside indicators of illness severity. This study compared subjectively assessed dorsal forearm skin temperature and moisture with other indicators of illness severity.

Methods: Non-interventional observational study of acutely ill medical patients admitted to a low-resource Ugandan hospital, which examined the association of subjectively assessed dorsal forearm skin temperature and other bedside findings with death within 24 h.

View Article and Find Full Text PDF

Radiative Cooling Meta-Fabric Integrated with Knitting Perspiration-Wicking and Coating Heat Conduction.

ACS Nano

January 2025

Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

Radiative cooling is an emerging zero-energy-consumption technology for human body cooling in outdoor scenarios during hot seasons. However, existing radiative cooling textiles are limited by low intrinsic cooling power, high hydrophobicity, and heat-insulating properties, which seriously impede a satisfying cooling effect, perspiration-wicking, and heat dissipation, thus limiting human thermal comfort in practical situations. Here, we developed a radiative cooling meta-fabric that was integrated with high perspiration-wicking and thermal conduction capacity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!