A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The influence of one-carbon metabolism on gene promoter methylation in a population-based breast cancer study. | LitMetric

Abnormal methylation in gene promoters is a hallmark of the cancer genome; however, factors that may influence promoter methylation have not been well elucidated. As the one-carbon metabolism pathway provides the universal methyl donor for methylation reactions, perturbation of this pathway might influence DNA methylation and, ultimately, affect gene functions. Utilizing approximately 800 breast cancer tumor tissues from a large population-based study, we investigated the relationships between dietary and genetic factors involved in the one-carbon metabolism pathway and promoter methylation of a panel of 13 breast cancer-related genes. We found that CCND2, HIN1 and CHD1 were the most "dietary sensitive" genes, as methylation of their promoters was associated with intakes of at least two out of the eight dietary methyl factors examined. On the other hand, some micronutrients (i.e., B 2 and B 6) were more "epigenetically active" as their intake levels correlated with promoter methylation status in 3 out of the 13 breast cancer genes evaluated. Both positive (hypermethylation) and inverse (hypomethylation) associations with high micronutrient intake were observed. Unlike what we saw for dietary factors, we did not observe any clear patterns between one-carbon genetic polymorphisms and the promoter methylation status of the genes examined. Our results provide preliminary evidence that one-carbon metabolism may have the capacity to influence the breast cancer epigenome. Given that epigenetic alterations are thought to occur early in cancer development and are potentially reversible, dietary modifications may offer promising venues for cancer intervention and prevention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3242810PMC
http://dx.doi.org/10.4161/epi.6.11.17744DOI Listing

Publication Analysis

Top Keywords

promoter methylation
20
one-carbon metabolism
16
breast cancer
16
methylation
9
metabolism pathway
8
methylation status
8
cancer
7
promoter
5
breast
5
influence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!