Predictive coding models suggest that predicted sensory signals are attenuated (silencing of prediction error). These models, though influential, are challenged by the fact that prediction sometimes seems to enhance rather than reduce sensory signals, as in the case of attentional cueing experiments. One possible explanation is that in these experiments, prediction (i.e., stimulus probability) is confounded with attention (i.e., task relevance), which is known to boost rather than reduce sensory signal. However, recent theoretical work on predictive coding inspires an alternative hypothesis and suggests that attention and prediction operate synergistically to improve the precision of perceptual inference. This model posits that attention leads to heightened weighting of sensory evidence, thereby reversing the sensory silencing by prediction. Here, we factorially manipulated attention and prediction in a functional magnetic resonance imaging study and distinguished between these 2 hypotheses. Our results support a predictive coding model wherein attention reverses the sensory attenuation of predicted signals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cercor/bhr310 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!