An optimized Kalman filter for the estimate of trunk orientation from inertial sensors data during treadmill walking.

Gait Posture

Laboratory of Locomotor Apparatus Bioengineering, Department of Human Movement and Sport Sciences, Università degli Studi di Roma Foro Italico, Piazza Lauro De Bosis, 6, 00135 Rome, Italy.

Published: January 2012

The aim of this study was the fine tuning of a Kalman filter with the intent to provide optimal estimates of lower trunk orientation in the frontal and sagittal planes during treadmill walking at different speeds using measured linear acceleration and angular velocity components represented in a local system of reference. Data were simultaneously collected using both an inertial measurement unit (IMU) and a stereophotogrammetric system from three healthy subjects walking on a treadmill at natural, slow and fast speeds. These data were used to estimate the parameters of the Kalman filter that minimized the difference between the trunk orientations provided by the filter and those obtained through stereophotogrammetry. The optimized parameters were then used to process the data collected from a further 15 healthy subjects of both genders and different anthropometry performing the same walking tasks with the aim of determining the robustness of the filter set up. The filter proved to be very robust. The root mean square values of the differences between the angles estimated through the IMU and through stereophotogrammetry were lower than 1.0° and the correlation coefficients between the corresponding curves were greater than 0.91. The proposed filter design can be used to reliably estimate trunk lateral and frontal bending during walking from inertial sensor data. Further studies are needed to determine the filter parameters that are most suitable for other motor tasks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gaitpost.2011.08.024DOI Listing

Publication Analysis

Top Keywords

kalman filter
12
filter
8
estimate trunk
8
trunk orientation
8
treadmill walking
8
healthy subjects
8
data
5
walking
5
optimized kalman
4
filter estimate
4

Similar Publications

Online vibration state identification of multi-rigid-body system based on self-healing model.

Sci Rep

December 2024

School of Mechanical Engineering, Liaoning Engineering Vocational College, Tieling, 112008, Liaoning, People's Republic of China.

The paper proposes a multi-rigid-body system state identification method based on self-healing model in order to improve the accuracy and reliability of CNC machine tools. Firstly, considering the influence of the joint surface, the Lagrange method is used to establish the mechanical model of the multi-rigid-body system. We input acceleration information and use the second-order modulation function to complete the online real-time identification of the joint surface parameters, thereby establishing the self-healing mechanical model of the multi-rigid-body system.

View Article and Find Full Text PDF

The accident mortality rates are rapidly increasing due to driver inattention, and traffic accidents become a significant problem on a global scale. For this reason, advanced driver assistance systems (ADASs) are essential to enhance traffic safety measures. However, adverse environmental factors, weather, and light radiation affect the sensors' accuracy.

View Article and Find Full Text PDF

Distributed coordinated motion control of multiple UAVs oriented to optimization of air-ground relay network.

Sci Rep

December 2024

School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China.

A novel adaptive model-based motion control method for multi-UAV communication relay is proposed, which aims at improving the networks connectivity and the communications performance among a fleet of ground unmanned vehicles. The method addresses the challenge of relay UAVs motion control through joint consideration with unknown multi-user mobility, environmental effects on channel characteristics, unavailable angle-of-arrival data of received signals, and coordination among multiple UAVs. The method consists of two parts: (1) Network connectivity is constructed and communication performance index is defined using the minimum spanning tree in graph theory, which considers both the communication link between ground node and UAV, and the communication link between ground nodes.

View Article and Find Full Text PDF

Autonomous vehicles, often known as self-driving cars, have emerged as a disruptive technology with the promise of safer, more efficient, and convenient transportation. The existing works provide achievable results but lack effective solutions, as accumulation on roads can obscure lane markings and traffic signs, making it difficult for the self-driving car to navigate safely. Heavy rain, snow, fog, or dust storms can severely limit the car's sensors' ability to detect obstacles, pedestrians, and other vehicles, which pose potential safety risks.

View Article and Find Full Text PDF

GPS/VIO integrated navigation system based on factor graph and fuzzy logic.

Sci Rep

December 2024

Department of Electrical Engineering, Iran University of Science and Technology, Tehran, 16846-13114, Iran.

In today's technologically advanced landscape, precision in navigation and positioning holds paramount importance across various applications, from robotics to autonomous vehicles. A common predicament in location-based systems is the reliance on Global Positioning System (GPS) signals, which may exhibit diminished accuracy and reliability under certain conditions. Moreover, when integrated with the Inertial Navigation System (INS), the GPS/INS system could not provide a long-term solution for outage problems due to its accumulated errors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!