N,N'-Diallylaldardiamides (DA) were synthesized from galactaric, xylaric, and arabinaric acids, and used as cross-linkers together with xylan (X) derivatives to create new bio-based hydrogels. Birch pulp extracted xylan was derivatized to different degrees of substitution of 1-allyloxy-2-hydroxy-propyl (A) groups combined with 1-butyloxy-2-hydroxy-propyl (B) and/or hydroxypropyl (HP) groups. The hydrogels were prepared in water solution by UV induced free-radical cross-linking polymerization of derivatized xylan polymers without DA cross-linker (xylan derivative hydrogel) or in the presence of 1 or 5 wt% of DA cross-linker (DA hydrogel). Commercially available cross-linker (+)-N,N'-diallyltartardiamide (DAT) was also used. The degree of substitution (DS) of A, B, and HP groups in xylan derivatives was analyzed according to (1)H NMR spectra. The DS values for the cross-linkable A groups of the derivatized xylans were 0.4 (HPX-A), 0.2 (HPX-BA), and 0.4 (X-BA). The hydrogels were examined with FT-IR and elemental analysis which proved the cross-linking successful. Water absorption of the hydrogels was examined in deionized water. Swelling degrees up to 350% were observed. The swollen morphology of the hydrogels was assessed by scanning electron microscopy (SEM). The presence of cross-linkers in DA hydrogels had only a small impact on the water absorbency when compared to xylan derivative hydrogels but a more uniform pore structure was achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carres.2011.09.028DOI Listing

Publication Analysis

Top Keywords

cross-linkers xylan
8
hydrogels
8
xylan derivatives
8
xylan derivative
8
hydrogels examined
8
xylan
7
nn'-diallylaldardiamides cross-linkers
4
xylan derivatives-based
4
derivatives-based hydrogels
4
hydrogels nn'-diallylaldardiamides
4

Similar Publications

Identification of proteins involved in cell wall matrix polysaccharide biosynthesis is crucial to understand plant cell wall biology. We utilized cross-linking and immunoprecipitation with cell wall antibodies that recognized xyloglucan, xylan, mannan, and homogalacturonan to capture proteins associated with matrix polysaccharides in protoplasts. The use of cross-linkers allowed us to capture proteins actively associated with cell wall polymers, including those directly interacting with glycans via glycan-protein (GP) cross-linkers and those associated with proteins linked to glycans via a protein-protein (PP) cross-linker.

View Article and Find Full Text PDF

N,N'-Diallylaldardiamides (DA) were synthesized from galactaric, xylaric, and arabinaric acids, and used as cross-linkers together with xylan (X) derivatives to create new bio-based hydrogels. Birch pulp extracted xylan was derivatized to different degrees of substitution of 1-allyloxy-2-hydroxy-propyl (A) groups combined with 1-butyloxy-2-hydroxy-propyl (B) and/or hydroxypropyl (HP) groups. The hydrogels were prepared in water solution by UV induced free-radical cross-linking polymerization of derivatized xylan polymers without DA cross-linker (xylan derivative hydrogel) or in the presence of 1 or 5 wt% of DA cross-linker (DA hydrogel).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!