Techniques for the measurement of disruption halo currents in the National Spherical Torus Experiment.

Rev Sci Instrum

Princeton Plasma Physics Laboratory, Plainsboro, New Jersey 08540, USA.

Published: October 2011

This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments [M. Ono et al., Nucl. Fusion 40, 557 (2000)]. The measurements are based on three techniques: (1) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (2) the direct measurement of halo currents into specially instrument tiles, and (3) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peaking factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems are shown.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3642618DOI Listing

Publication Analysis

Top Keywords

toroidal field
16
halo currents
12
halo current
12
rogowski coils
12
discrete toroidal
12
techniques measurement
8
national spherical
8
spherical torus
8
toroidal peaking
8
segmented rogowski
8

Similar Publications

Lithium niobate (LiNbO) has shown great potential for applications in nonlinear metasurfaces, thanks to its large second-order nonlinear coefficients and high integration capabilities. Optical resonances play a crucial role in further enhancing the nonlinear optical responses of LiNbO metasurfaces (LNMS). In this study, both numerically and experimentally, we designed and fabricated a metasurface structure that supports toroidal dipole (TD) resonance to enhance second-harmonic generation (SHG).

View Article and Find Full Text PDF

Antiferromagnets with broken time-reversal ( ) symmetry ( -odd antiferromagnets) have gained extensive attention, mainly due to their ferromagnet-like behavior despite the absence of net magnetization. However, certain types of -odd antiferromagnets remain inaccessible by the typical ferromagnet-like phenomena (e.g.

View Article and Find Full Text PDF

Magnetoelastic Effect in Ni-Zn Ferrite Under Torque Operation.

Materials (Basel)

December 2024

Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, A. Boboli 8, 02-525 Warsaw, Poland.

The magnetoelastic effect is known as the dependence between the magnetic properties of the material and applied mechanical stress. The stress might not be applied directly but rather generated by the applied torque. This creates the possibility of developing a torque-sensing device based on the magnetoelastic effect.

View Article and Find Full Text PDF

Ferrotoroidicity in CsFeCl·DO.

Sci Rep

December 2024

Institut Laue-Langevin, 71, av des Martyrs CS 20156, Grenoble, 38042, France.

The promise of antiferromagnetic spintronics largely relies on the possibilities of electrical manipulation of antiferromagnetic states, which requires the exploration of innovative material platforms to meet the challenge. Erythrosiderite-type compounds constitute a class of non-oxide materials presenting magneto-electric couplings ranging from multiferroicity to linear magneto-electric behaviour. In this communication, we demonstrate that Cs[FeCl(DO)] shows evidence of another ferroic order, ferrotoroidicity, providing an alternative way of manipulating the magnetic states.

View Article and Find Full Text PDF

Dipole toroidal modes appear in many fields of physics. In nuclei, such a mode was predicted more than 50 years ago, but clear experimental evidence was lacking so far. Using a combination of high-resolution inelastic scattering experiments with photons, electrons, and protons, we identify for the first time candidates for toroidal dipole excitations in the nucleus ^{58}Ni and demonstrate that transverse electron scattering form factors represent a relevant experimental observable to prove their nature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!