Background: Bacterial vaginosis (BV) is an enigmatic disease of unknown origin that affects a large percentage of women. The vaginal microbiota of women with BV is associated with serious sequelae, including abnormal pregnancies. The etiology of BV is not fully understood, however, it has been suggested that it is transmissible, and that G. vaginalis may be an etiological agent. Studies using enzymatic assays to define G. vaginalis biotypes, as well as more recent genomic comparisons of G. vaginalis isolates from symptomatic and asymptomatic women, suggest that particular G. vaginalis strains may play a key role in the pathogenesis of BV.
Methodology/principal Findings: To explore G. vaginalis diversity, distribution and sexual transmission, we developed a Shannon entropy-based method to analyze low-level sequence variation in 65,710 G. vaginalis 16S rRNA gene segments that were PCR-amplified from vaginal samples of 53 monogamous women and from urethral and penile skin samples of their male partners. We observed a high degree of low-level diversity among G. vaginalis sequences with a total of 46 unique sequence variants (oligotypes), and also found strong correlations of these oligotypes between sexual partners. Even though Gram stain-defined normal and some Gram stain-defined intermediate oligotype profiles clustered together in UniFrac analysis, no single G. vaginalis oligotype was found to be specific to BV or normal vaginal samples.
Conclusions: This study describes a novel method for investigating G. vaginalis diversity at a low level of taxonomic discrimination. The findings support cultivation-based studies that indicate sexual partners harbor the same strains of G. vaginalis. This study also highlights the fact that a few, reproducible nucleotide variations within the 16S rRNA gene can reveal clinical or epidemiological associations that would be missed by genus-level or species-level categorization of 16S rRNA data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3201972 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026732 | PLOS |
PLoS One
December 2024
Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America.
Millions of tons of polyethylene terephthalate (PET) are produced each year, however only ~30% of PET is currently recycled in the United States. Improvement of PET recycling and upcycling practices is an area of ongoing research. One method for PET upcycling is chemical depolymerization (through hydrolysis or aminolysis) into aromatic monomers and subsequent biodegradation.
View Article and Find Full Text PDFVet Sci
December 2024
Camel Research Center, King Faisal University, 400 Al-Ahsa, Hofuf 31982, Saudi Arabia.
Currently, bacterial classification at the species level relies on the 95-96% average nucleotide identity (ANI) value that is known to be equivalent to a 70% digital DNA-DNA hybridization (dDDH) value. However, during the routine identification of bacteria in the uteri of camels with a history of conception failure, we found that four out of the seven strains (2298A, 2569A, 2652, 2571B, 1103A, 2571A, and 335C) could not be assigned to any valid species. Furthermore, a 70% dDDH value did not correspond to a 95-96% ANI value in strain 2569A.
View Article and Find Full Text PDFVet Sci
December 2024
Facultad de Agronomía y Veterinaria, Centro de Biociencias, Instituto de Investigaciones en Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico.
The impact of macroalgae species on rumen function remains largely unexplored. This present study aimed to identify the biocompounds of the three types of marine macroalgae described: (Brown), spp. (Lettuce), spp.
View Article and Find Full Text PDFVet Sci
December 2024
College of Agriculture & Environmental Sciences, University of South Africa, Private Bag X6, Roodepoort 1710, South Africa.
Ticks are a significant threat to livestock globally, with certain species displaying distinct host preferences at various developmental stages. Accurate species-level identification is essential for studying tick populations, implementing control strategies, and understanding disease dynamics. This study evaluated ticks infesting cattle across six provinces in South Africa using morphological and molecular methods.
View Article and Find Full Text PDFVet Sci
November 2024
Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru.
This study evaluated the gut microbiota and meat quality traits in 11 healthy female cattle from the Huaral region of Peru, including 5 Angus, 3 Braunvieh, and 3 F1 Simmental × Braunvieh. All cattle were 18 months old and maintained on a consistent lifelong diet. Meat quality traits, including loin area, fat thickness, muscle depth, and marbling, were assessed in vivo using ultrasonography.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!