Initially thought as being non-immunogenic, recombinant AAVs have emerged as efficient vector candidates for treating monogenic diseases. It is now clear however that they induce potent immune responses against transgene products which can lead to destruction of transduced cells. Therefore, developing strategies to circumvent these immune responses and facilitate long-term expression of transgenic therapeutic proteins is a main challenge in gene therapy. We evaluated herein a strategy to inhibit the undesirable immune activation that follows muscle gene transfer by administration of CTLA-4/Ig to block the costimulatory signals required early during immune priming and by using gene transfer of PD-1 ligands to inhibit T cell functions at the tissue sites. We provide the proof of principle that this combination immunoregulatory therapy targeting two non-redundant checkpoints of the immune response, i.e., priming and effector functions, can improve persistence of transduced cells in experimental settings where cytotoxic T cells escape initial blockade. Therefore, CTLA-4/Ig plus PD-L1/2 combination therapy represents a candidate approach to circumvent the bottleneck of immune responses directed toward transgene products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202221PMC
http://dx.doi.org/10.3389/fmicb.2011.00199DOI Listing

Publication Analysis

Top Keywords

gene transfer
12
immune responses
12
combination therapy
8
muscle gene
8
transgene products
8
transduced cells
8
immune
6
improved immunological
4
immunological tolerance
4
tolerance combination
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!