During human and murine cytomegalovirus (MCMV) infection an exceptionally large virus-specific CD8 T cell pool is maintained in the periphery lifelong. This anomalous response is only seen for specific subsets of MCMV-specific CD8 T cells which are referred to as 'inflationary T cells'. How memory CD8 T cell inflation is induced and maintained is unclear, though their activated phenotype strongly suggests an involvement of persistent antigen encounter during MCMV latency. To dissect the cellular and molecular requirements for memory CD8 T cell inflation, we have generated a transgenic mouse expressing an MHC class I-restricted T cell receptor specific for an immunodominant inflationary epitope of MCMV. Through a series of adoptive transfer experiments we found that memory inflation was completely dependent on antigen presentation by non-hematopoietic cells, which are also the predominant site of MCMV latency. In particular, non-hematopoietic cells selectively induced robust proliferation of inflationary CD8 T cells in lymph nodes, where a majority of the inflationary CD8 T cells exhibit a central-memory phenotype, but not in peripheral tissues, where terminally differentiated inflationary T cells accumulate. These results indicate that continuous restimulation of central memory CD8 T cells in the lymph nodes by infected non-hematopoietic cells ensures the maintenance of a functional effector CD8 T pool in the periphery, providing protection against viral reactivation events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203160 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1002313 | DOI Listing |
Int J Biochem Cell Biol
January 2025
Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Lavale, Pune, India. Electronic address:
Mesenchymal stromal cells (MSCs) isolated from tissues such as bone marrow, cord, cord blood, etc., are frequently used as feeder layers to expand hematopoietic stem/ progenitor cells (HSCs/HSPCs) in vitro. They are also co-infused with the HSCs to improve the efficacy of transplantation.
View Article and Find Full Text PDFPharmacol Res
January 2025
TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China. Electronic address:
Bone marrow hematopoietic injury encompasses a range of pathological conditions that disrupt the normal function of the hematopoietic system, primarily through the impaired production and differentiation of bone marrow hematopoietic cells. Key pathogenic mechanisms include aging, radiation damage, chemical induction, infection and inflammation, and cross-talk with non-hematopoietic diseases. These pathological factors often lead to myelosuppression and myeloid skewing.
View Article and Find Full Text PDFJ Exp Med
February 2025
Immunology Department, Unit of Lymphocytes and Immunity, Institut Pasteur, Paris, France.
Embryonic hematopoietic cells develop in the fetal liver (FL), surrounded by diverse non-hematopoietic stromal cells. However, the spatial organization and cytokine production patterns of the stroma during FL development remain poorly understood. Here, we characterized and mapped the hematopoietic and stromal cell populations at early (E12.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy.
Mesenchymal stromal cells (MSCs) are a heterogeneous population of non-hematopoietic adult stem cells derived from the embryonic mesoderm. They possess self-renewal and multipotent differentiation capabilities, allowing them to give rise to mesodermal cell types, such as osteoblasts, chondroblasts, and adipocytes, as well as non-mesodermal cells, including neuron-like cells and endothelial cells. MSCs play a vital role in maintaining homeostasis across various tissues by facilitating tissue repair, immune regulation, and inflammatory response balance.
View Article and Find Full Text PDFCurr Protoc
December 2024
Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany.
Stromal cells are non-hematopoietic cells that consist of endothelial cells and various mesenchymal cell populations. The composition of the stromal cell compartment is diverse in different organs. Numerous recent studies demonstrated that the lung environment contains heterogeneous mesenchymal stromal cell populations with distinctive genomic signatures and location preferences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!