Radiation and functional diversification of alpha keratins during early vertebrate evolution.

Mol Biol Evol

Biology Department, Unit of Ecology and Systematics, Amphibian Evolution Lab, Vrije Universiteit Brussel, Brussels, Belgium.

Published: March 2012

The conquest of land was arguably one of the most fundamental ecological transitions in vertebrates and entailed significant changes in skin structure and appendages to cope with the new environment. In extant tetrapods, the rigidity of the integument is largely created by type I and type II keratins, which are structural proteins essential in forming a strong cytoplasmic network. It is expected that such proteins have undergone fundamental changes in both stem and crown tetrapods. Here, we integrate genomic, phylogenetic, and expression data in a comprehensive study on the early evolution and functional diversification of tetrapod keratins. Our analyses reveal that all type I and type II tetrapod keratins evolved from only two genes that were present in the ancestor of extant vertebrates. Subsequently, the water-to-land transition in the stem lineage of tetrapods was associated with a major radiation and functional diversification of keratin genes. These duplications acquired functions that serve rigidity in integumental hard structures and were the prime for subsequent independent keratin diversification in tetrapod lineages.

Download full-text PDF

Source
http://dx.doi.org/10.1093/molbev/msr269DOI Listing

Publication Analysis

Top Keywords

functional diversification
12
radiation functional
8
type type
8
diversification tetrapod
8
tetrapod keratins
8
diversification
4
diversification alpha
4
keratins
4
alpha keratins
4
keratins early
4

Similar Publications

Thymic mimetic cells are molecular hybrids between medullary-thymic-epithelial cells (mTECs) and diverse peripheral cell types. They are involved in eliminating autoreactive T cells and can perform supplementary functions reflective of their peripheral-cell counterparts. Current knowledge about mimetic cells derives largely from mouse models.

View Article and Find Full Text PDF

The development of management strategies for the promotion of sustainable fisheries relies on a deep knowledge of ecological and evolutionary processes driving the diversification and genetic variation of marine organisms. Sustainability strategies are especially relevant for marine species such as the European sardine (Sardina pilchardus), a small pelagic fish with high ecological and socioeconomic importance, especially in Southern Europe, whose stock has declined since 2006, possibly due to environmental factors. Here, we generated sequences for 139 mitochondrial genomes from individuals from 19 different geographical locations across most of the species distribution range, which was used to assess genetic diversity, diversification history and genomic signatures of selection.

View Article and Find Full Text PDF

Millets for a sustainable future.

J Exp Bot

December 2024

Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.

Our current agricultural system faces a perfect storm-climate change, burgeoning population, and unpredictable outbreaks like COVID-19 disrupt food production, particularly for vulnerable populations in developing countries. A paradigm shift in agriculture practices is needed to tackle these issues. One solution is the diversification of crop production.

View Article and Find Full Text PDF

Background: The order Rodentia is the largest group of mammals. Diversification of vocal communication has contributed to rodent radiation and allowed them to occupy diverse habitats and adopt different social systems. The mechanism by which efficient vocal sounds, which carry over surprisingly large distances, are generated is incompletely understood.

View Article and Find Full Text PDF

Diverse Transient Chiral Dynamics in Evolutionary Distinct Photosynthetic Reaction Centers.

J Chem Theory Comput

December 2024

Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China.

The evolution of photosynthetic reaction centers (RCs) from anoxygenic bacteria to higher-order oxygenic cynobacteria and plants highlights a remarkable journey of structural and functional diversification as an adaptation to environmental conditions. The role of chirality in these centers is important, influencing the arrangement and function of key molecules involved in photosynthesis. Investigating the role of chirality may provide a deeper understanding of photosynthesis and the evolutionary history of life on Earth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!