The VirB/D4 type IV secretion system (T4SS) of the bacterial pathogen Bartonella henselae (Bhe) translocates seven effector proteins (BepA-BepG) into human cells that subvert host cellular functions. Two redundant pathways dependent on BepG or the combination of BepC and BepF trigger the formation of a bacterial uptake structure termed the invasome. Invasome formation is a multi-step process consisting of bacterial adherence, effector translocation, aggregation of bacteria on the cell surface and engulfment, and eventually, complete internalization of the bacterial aggregate occurs in an F-actin-dependent manner. In the present study, we show that Bhe-triggered invasome formation depends on integrin-β1-mediated signaling cascades that enable assembly of the F-actin invasome structure. We demonstrate that Bhe interacts with integrin β1 in a fibronectin- and VirB/D4 T4SS-independent manner and that activated integrin β1 is essential for both effector translocation and the actin rearrangements leading to invasome formation. Furthermore, we show that talin1, but not talin2, is required for inside-out activation of integrin β1 during invasome formation. Finally, integrin-β1-mediated outside-in signaling by FAK, Src, paxillin and vinculin is necessary for invasome formation. This is the first example of a bacterial entry process that fully exploits the bi-directional signaling capacity of integrin receptors in a talin1-specific manner.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.084459DOI Listing

Publication Analysis

Top Keywords

invasome formation
20
integrin β1
16
bartonella henselae
8
outside-in signaling
8
bacterial uptake
8
effector translocation
8
invasome
7
bacterial
6
formation
6
integrin
5

Similar Publications

Objective: The preparation of safranal-containing invasomes for fluconazole (FLU-IN) is investigated in the current research work to augment FLU permeation, bioavailability, and solubility nail for transungual delivery.

Methods: FLU-IN was prepared utilizing the 'thin-film hydration process', and for optimization, 'Box-Behnken design (BBD)' was employed. Entrapment efficiency (EE), Poly-dispersity index (PDI), FLU release, vesicle size and zeta potential were used to characterize FLU-INopt.

View Article and Find Full Text PDF
Article Synopsis
  • * Three types of nano-vesicular systems—liposomes, penetration enhancer vesicles (PEVs), and invasomes—were developed, showing effective sizes, stability, and prolonged release of alpha arbutin for up to 24 hours.
  • * A clinical study indicated that using the alpha arbutin-loaded liposomes and PEVs resulted in significantly better outcomes for melasma patients compared to traditional treatments, highlighting their potential as superior delivery systems for skin care.
View Article and Find Full Text PDF

Anastrazole (ASZ) is an effective aromatase inhibitor that is used for breast cancer treatment. Nevertheless, ASZ's effectiveness is diminished due to its low water solubility, unregulated release, absence of targeting, and inadequate patient compliance. The goal of the research was to create a hydrogel formulation of ASZ-loaded invasomes (ALI) to enhance the solubility, permeability, targeting, and efficacy of ASZ while also sustaining its release for treatment of breast cancer.

View Article and Find Full Text PDF

Luteolin (LN), is an herbal bioactive flavone and exhibits many pharmacological activities. However, the bioavailability of LN is limited due to its inadequate solubility and significant first-pass metabolism. The present study developed transdermal LN-loaded invasomes (IVM) gel to improve the therapeutic efficacy.

View Article and Find Full Text PDF

Beyond Skin Deep: Phospholipid-Based Nanovesicles as Game-Changers in Transdermal Drug Delivery.

AAPS PharmSciTech

August 2024

Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.

Transdermal administration techniques have gained popularity due to their advantages over oral and parenteral methods. Noninvasive, self-administered delivery devices improve patient compliance and control drug release. Transdermal delivery devices struggle with the skin's barrier function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!