Purpose: To investigate MRI biomarkers of muscle atrophy during cast immobilization of the lower leg.

Materials And Methods: Eighteen patients (8 male, 10 female), who had one lower leg immobilized in a cast, underwent 3.0 Tesla (T) MR imaging 5, 8, 15, 29, and 43 days after casting. Measurements were made on both lower legs of total muscle volume. Cross-sectional area (CSA), fractional water content, and T(2) were measured in tibialis anterior (TA), gastrocnemius medialis (GM) and lateralis (GL) and soleus (SOL). Fiber pennation angle was measured in GM.

Results: Total muscle volume decreased by 17% (P < 0.001) over the 6 weeks of immobilization. The greatest loss in CSA (mean[SD]) was seen in GM (-23.3(8.7)%), followed by SOL (-19.0(9.8)%), GL (-17.1(6.5)%), and TA (-10.7(5.9)%). Significant reductions of CSA were also detectable in the contra-lateral leg. T(2) increased in all muscles: TA 27.0(2.5) ms to 29.6(2.8) ms (P < 0.001), GM 34.6(2.9) ms to 39.8(5.4) ms (P < 0.001) and SOL 34.4 (2.9) ms to 44.9(5.9) ms (P < 0.001). Small reductions were found in fractional water content. Pennation angle decreased in the cast leg (P < 0.001).

Conclusion: Quantitative MR imaging can detect and monitor progressive biochemical and biophysical changes in muscle during immobilization.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.22864DOI Listing

Publication Analysis

Top Keywords

muscle atrophy
8
lower leg
8
total muscle
8
muscle volume
8
fractional water
8
water content
8
pennation angle
8
muscle
5
longitudinal mri
4
mri study
4

Similar Publications

Background: Iliopsoas tenotomy is commonly used to address refractory groin pain resulting from iliopsoas tendinopathy. However, consensus and high-level research on its effectiveness are lacking, with concerns about poor outcomes and complications. Little is known of the effects of iliopsoas tenotomy on the peri-articular muscle envelope of the hip.

View Article and Find Full Text PDF

Background: The evidence on the link between cardiometabolic diseases (CMDs) and motor neuron diseases (MNDs) remains inconsistent. We aimed to determine whether there is an association of CMDs, namely, any cardiovascular disease, cardiac arrhythmia, heart failure, thromboembolic disease, hypertension, cerebrovascular disease, ischemic heart disease, diabetes mellitus type 2, and hypercholesterolemia with the risk and progression of MNDs.

Methods: We included 1463 MND patients (amyotrophic lateral sclerosis (ALS), primary lateral sclerosis (PLS), progressive spinal muscular atrophy (PSMA), and unspecified MND) diagnosed from January 1, 2015, to July 1, 2023, in Sweden according to the Swedish Motor Neuron Disease Quality Registry (i.

View Article and Find Full Text PDF

Novel oral compound Z526 mitigates cancer-associated cachexia via intervening NF-κB signaling and oxidative stress.

Genes Dis

March 2025

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

Cancer-associated cachexia (CAC) is a severe metabolic disorder syndrome mainly characterized by muscle and fat loss, which accounts for one-third of cancer-related deaths. No effective therapeutic approach that could fully reverse CAC is available. NF-κB signaling and oxidative stress play vital roles in both muscle atrophy and fat loss in CAC.

View Article and Find Full Text PDF

Unlabelled: Sarcopenic obesity, encompassing both muscle wasting and obesity, is relevant across individuals. (TS) has been shown to regulate glucose and lipid metabolisms. However, the efficacy and mechanisms of TS fruit (TSF) in sarcopenic obesity are unclear.

View Article and Find Full Text PDF

Exercise-driven cellular autophagy: A bridge to systematic wellness.

J Adv Res

January 2025

Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, PR China; Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, PR China. Electronic address:

Background: Exercise enhances health by supporting homeostasis, bolstering defenses, and aiding disease recovery. It activates autophagy, a conserved cellular process essential for maintaining balance, while dysregulated autophagy contributes to disease progression. Despite extensive research on exercise and autophagy independently, their interplay remains insufficiently understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!