Pediatric cataract of the congenital type is the most common form of childhood blindness and it is clinically and genetically heterogeneous. Mutations in 22 different genes have been identified to be associated with congenital cataracts, and among them, eight mutants belong to αA-crystallin. To explain how mutations in αA-crystallin lead to the development of cataract, quaternary structural parameters, and chaperone function have been investigated in αA-wt and in the following mutants: R12C, R21L, R21W, R49C, R54C, R116C, and R116H. Average molar mass, mass at the RI peak, mass across the peak, hydrodynamic radius (R(h)), and polydispersity index (PDI) were determined by dynamic light-scattering measurements. The average molar mass and mass across the peak showed major increase in R116C and R116H, moderate increase in R12C, R21W, and R54C, and no increase in R21L and R49C as compared to αA-wt. PDI and R(h) values were significantly increased only in R116C and R116H. Significant secondary structural changes, as determined by CD measurements, were seen in R21W, R21L, R116C, and R116H, and tertiary structural changes were evident in R21W, R54C, R116C, and R116H. Non-reducing SDS-PAGE has shown the presence of dimers presumably formed by inter-polypeptide disulfide bonds. Chaperone activity, as measured with ADH as the target protein, appeared normal in R49C and R54C, while R12C, R21L, and R21W showed moderate loss and R116C and R116H showed significant loss. Although a specific change in the αA-crystallin behavior that is common to all the mutants was not evident, each mutant showed one or more perturbation as the end effect that leads to cataract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788686PMC
http://dx.doi.org/10.1007/s11010-011-1131-8DOI Listing

Publication Analysis

Top Keywords

r116c r116h
24
mass peak
12
quaternary structural
8
structural parameters
8
r12c r21l
8
r21l r21w
8
r49c r54c
8
r54c r116c
8
average molar
8
molar mass
8

Similar Publications

The αA-crystallin protein plays a vital role in maintaining the refractive index and transparency of the eye lens. Significant clinical studies have emerged as the αA-crystallin is prone to aggregation, resulting in the formation of cataracts with varied etiologies due to mutations. This work aims to comprehend the structural and functional role of cataract-causing mutations in αA-crystallin, particularly at N-Terminal and α-Crystallin Domains, using in-silico approaches including molecular dynamics simulation.

View Article and Find Full Text PDF

Membrane insertion of αA-crystallin is oligomer-size dependent.

Biochem Biophys Res Commun

April 2016

State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China. Electronic address:

Vertebrate lens is one of the tissues with the highest soluble protein concentration. The predominant soluble proteins in lens fiber cells are crystallins, and among them, α-crystallins belong to the small heat shock protein family with chaperone-like activity. Although α-crystallins are highly soluble in waters, α-crystallins have been detected in the membrane-bound fraction of lens, which will increase in the aged or cataractous lens.

View Article and Find Full Text PDF

Background: Mutations of human αA-crystallin cause congenital cataract by protein aggregation. How mutations of αA-crystallin cause disease pathogenesis through protein aggregation is not well understood. To better understand the cellular events leading to protein aggregation, we transfected cataract causing mutants, R12C, R21L, R21W, R49C, R54C, R116C and R116H, of human αA-crystallin in HeLa cells and examined the formation of intracellular protein aggregates and aggresomes by confocal microscopy.

View Article and Find Full Text PDF

Pediatric cataract of the congenital type is the most common form of childhood blindness and it is clinically and genetically heterogeneous. Mutations in 22 different genes have been identified to be associated with congenital cataracts, and among them, eight mutants belong to αA-crystallin. To explain how mutations in αA-crystallin lead to the development of cataract, quaternary structural parameters, and chaperone function have been investigated in αA-wt and in the following mutants: R12C, R21L, R21W, R49C, R54C, R116C, and R116H.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!