Characteristics of the aberrant pyramidal tract in comparison with the pyramidal tract in the human brain.

BMC Neurosci

Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, Republic of Korea.

Published: November 2011

Background: The aberrant pyramidal tract (APT) refers to the collateral pathway of the pyramidal tract (PT) through the medial lemniscus in the midbrain and pons. Using diffusion tensor tractography (DTT), we investigated the characteristics of the APT in comparison with the PT in the normal human brain.

Results: In thirty-four (18.3%, right hemisphere: 20, left hemisphere: 14) of the 186 hemispheres, the APTs separated from the PT at the upper midbrain level, descended through the medial lemniscus from the midbrain to the pons, and then rejoined with the PT at the upper medulla. Nine (26.5%) of the 34 APTs were found to originate from the primary somatosensory cortex without a primary motor cortex origin. Values of fractional anisotropy (FA) and tract volume of the APT were lower than those of the PT (P < 0.05); however, no difference in mean diffusivity (MD) value was observed (P > 0.05).

Conclusion: We found that the APT has different characteristics, including less directionality, fewer neural fibers, and less origin from the primary motor cortex than the PT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3217915PMC
http://dx.doi.org/10.1186/1471-2202-12-108DOI Listing

Publication Analysis

Top Keywords

pyramidal tract
16
aberrant pyramidal
8
medial lemniscus
8
lemniscus midbrain
8
midbrain pons
8
primary motor
8
motor cortex
8
tract
5
characteristics aberrant
4
pyramidal
4

Similar Publications

A 49-year-old female presented with the primary complaint of hand tremors. Neurological examination on admission revealed signs of cognitive impairment, bulbar palsy, dystonia, cerebellar ataxia, and pyramidal tract disease. T-weighted brain MRI revealed hyperintense signals in the subcortical white matter, basal ganglia, and cerebellar dentate nucleus, with no atrophy of the brainstem or corpus callosum.

View Article and Find Full Text PDF

Cerebrotendinous Xanthomatosis occurs at high frequency in Ashkenazi Jews.

Mol Genet Metab

January 2025

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA. Electronic address:

Cerebrotendinous Xanthomatosis (CTX) is a treatable, inborn error of bile acids metabolism caused by pathogenic variants in CYP27A1. CTX is a multi-organ system disorder that progresses over decades. Clinical features include cerebellar dysfunction, pyramidal tract dysfunction, cognitive deficits and decline, peripheral neuropathy, chronic diarrhea, bilateral cataracts, and tendon xanthomas.

View Article and Find Full Text PDF

There is a consensus that motor recovery post-stroke primarily depends on the degree of the initial connectivity of the ipsilesional corticospinal tract (CST). Indeed, if the residual CST connectivity is sufficient to convey motor commands, the neuromotor system continues to use the CST predominantly, and motor function recovers up to 80%. In contrast, if the residual CST connectivity is insufficient, hand/arm dexterity barely recovers, even as the phases of stroke progress.

View Article and Find Full Text PDF

Anatomy, histology and ultrastructure of the adult human olfactory peduncle: Blood vessel and corpora amylacea assessment.

Tissue Cell

January 2025

Neurogenesis and Neurostereology laboratory, Biomedicine Institute-UCLM, Institute of Health Research of Castilla-La Mancha (IDISCAM), University of Castilla-La Mancha, Albacete, Spain. Electronic address:

The mammalian olfactory system is responsible for processing environmental chemical stimuli and comprises several structures, including the olfactory epithelium, olfactory bulb, olfactory peduncle (OP), and olfactory cortices. Despite the critical role played by the OP in the conduction of olfactory information, it has remained understudied. In this work, optical, confocal, and electron microscopy were employed to examine the anatomy, histology, and ultrastructure of six human OP specimens (ages 37-84 years).

View Article and Find Full Text PDF

Previous research on resting muscles has shown that inter-pulse interval (IPI) duration influences transcranial magnetic stimulation (TMS) responses, which can introduce serious confounding variables into investigations if not accounted for. However, it is far less clear how IPI influences TMS responses in active muscles. Thus, the purpose of this study was to examine the relationship between IPI and corticospinal excitability during submaximal isometric elbow flexion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!