Given that metastasized melanoma is a fatal disease in most cases, it is tempting to develop strategies to a priori prevent metastasis. We have stimulated the pulmonary innate immune system by macrophage-activating lipopeptide-2 (MALP-2), a specific agonist at Toll-like receptor (TLR) 2/6, and investigated its impact on experimental melanoma metastasis. In C57BL/6 mice, intratracheal application of MALP-2 induced a profound influx of neutrophils and macrophages into the lung, which peaked after 24 h (sixfold increase) and returned to baseline within 72 h. Further analysis revealed that MALP-2 also markedly induced VCAM-1 expression on pulmonary blood vessels. In vitro experiments demonstrated that this adhesion molecule mediates binding of B16F10 melanoma cells. Furthermore, in vivo or in vitro treatment with MALP-2 did not significantly affect the ability of immune cells to lyse melanoma cells. As a consequence, notwithstanding the profound pulmonary immune response induction and in contrast to conclusions drawn from some previous publications, the net extent of experimental metastasis did not change significantly, regardless of the application regimen of MALP-2 prior to, concomitant with or after tumor cell inoculation. Melanoma cells stably transfected with green fluorescent protein allowed tracking of early events after tumor cell dissemination and showed that MALP-2-mediated TLR2/6 activation did not interfere with pulmonary melanoma cell arrest. Likewise, boosting the immune induction after establishment of metastases did not change the clinical outcome. These unexpected results vividly counsel caution regarding predictions of immunomodulating therapies, as multiple intertwined effects may influence the net outcome.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0625.2011.01386.xDOI Listing

Publication Analysis

Top Keywords

melanoma cells
12
pulmonary immune
8
melanoma metastasis
8
tumor cell
8
melanoma
7
malp-2
6
immune
5
stimulation pulmonary
4
immune responses
4
responses tlr2/6
4

Similar Publications

Oncolytic alphavirus-induced extracellular vesicles counteract the immunosuppressive effect of melanoma-derived extracellular vesicles.

Sci Rep

January 2025

Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, CEP 01246-000, Brazil.

Extracellular vesicles (EVs)-mediated communication by cancer cells contributes towards the pro-tumoral reprogramming of the tumor microenvironment. Viral infection has been observed to alter the biogenesis and cargo of EVs secreted from host cells in the context of infectious biology. However, the impact of oncolytic viruses on the cargo and function of EVs released by cancer cells remains unknown.

View Article and Find Full Text PDF

New treatment approaches are warranted for patients with advanced melanoma refractory to immune checkpoint blockade (ICB) or BRAF-targeted therapy. We designed BNT221, a personalized, neoantigen-specific autologous T cell product derived from peripheral blood, and tested this in a 3 + 3 dose-finding study with two dose levels (DLs) in patients with locally advanced or metastatic melanoma, disease progression after ICB, measurable disease (Response Evaluation Criteria in Solid Tumors version 1.1) and, where appropriate, BRAF-targeted therapy.

View Article and Find Full Text PDF

Long afterglow hybrid nanoplatform for integrated NIR-Ⅱ imaging diagnosis and triple-synergistic treatment of choroidal melanoma.

Talanta

December 2024

The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China. Electronic address:

The key to the treatment of choroidal melanoma (CM) is to improve diagnostic efficiency and find a high-performance treatment to replace the traditional treatment of radiotherapy and enucleation. In this paper, for the first time, long afterglow luminescence material was applied to the integrated diagnosis and treatment of eyes, with its unique advantages in photoluminescence and afterglow luminescence to solve the bottleneck problem of real-time irradiation required for photothermal and photodynamic therapy (PTT and PDT). Based on the excellent photoluminescence and afterglow properties of ZnGaGeO:CrYbEr (ZGGO) nanoparticles, a nanoplatform ZGGO@Au@UiO-66@ZnPc:Dox-FA (GAUZD-FA) for NIR-Ⅱ imaging and triple-synergistic therapy (PTT, PDT and sustained-release drug) was constructed.

View Article and Find Full Text PDF

This study reveals the anti-tyrosinase activity of Ganoderma formosanum extracts, pinpointing compounds including gluconic acid, mesalamine, L-pyroglutamic acid, esculetin, 5-hydroxyindole, and salicylic acid, as effective melanin production inhibitors in melanoma cells and zebrafish embryos. Furthermore, multiple molecular docking simulations provided insights into interactions between the identified compounds and tyrosinase, increasing binding affinity up to -16.36 kcal/mol.

View Article and Find Full Text PDF

Functional differences between rodent and human PD-1 linked to evolutionary divergence.

Sci Immunol

January 2025

Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.

Mechanistic understanding of the inhibitory immunoreceptor PD-1 is largely based on mouse models, but human and mouse PD-1 share only 59.6% amino acid identity. Here, we found that human PD-1 is more inhibitory than mouse PD-1, owing to stronger interactions with the ligands PD-L1 and PD-L2 and more efficient recruitment of the effector phosphatase Shp2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!