Immunology
School of Medicine, University of St Andrews, Fife, UK.
Published: February 2012
Many MHC class I molecules contain unpaired cysteine residues in their cytoplasmic tail domains, the function of which remains relatively uncharacterized. Recently, it has been shown that in the small secretory vesicles known as exosomes, fully folded MHC class I dimers can form through a disulphide bond between the cytoplasmic tail domain cysteines, induced by the low levels of glutathione in these extracellular vesicles. Here we address whether similar MHC class I dimers form in whole cells by alteration of the redox environment. Treatment of the HLA-B27-expressing Epstein-Barr virus-transformed B-cell line Jesthom, and the leukaemic T-cell line CEM transfected with HLA-B27 with the strong oxidant diamide, and the apoptosis-inducing and glutathione-depleting agents hydrogen peroxide and thimerosal, induced MHC class I dimers. Furthermore, induction of apoptosis by cross-linking FasR/CD95 on CEM cells with monoclonal antibody CH-11 also induced MHC class I dimers. As with exosomal MHC class I dimers, the formation of these structures on cells is controlled by the cysteine at position 325 in the cytoplasmic tail domain of HLA-B27. Therefore, the redox environment of cells intimately controls induction of MHC class I dimers, the formation of which may provide novel structures for recognition by the immune system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3277715 | PMC |
http://dx.doi.org/10.1111/j.1365-2567.2011.03518.x | DOI Listing |
Elife
March 2025
Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, United States.
Natural killer (NK) cells recognize target cells through germline-encoded activation and inhibitory receptors enabling effective immunity against viruses and cancer. The Ly49 receptor family in the mouse and killer immunoglobin-like receptor family in humans play a central role in NK cell immunity through recognition of major histocompatibility complex class I (MHC-I) and related molecules. Functionally, these receptor families are involved in the licensing and rejection of MHC-I-deficient cells through missing-self.
View Article and Find Full Text PDFBioinform Adv
March 2025
ImmunoScape Pte Ltd, Singapore 228208, Singapore.
Summary: The exogenous, i.e. , loading of peptides onto major histocompatibility complex (MHC) class I molecules is a key step in many immunology-related experimental workflows.
View Article and Find Full Text PDFJ Immunol
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
As one of the earliest identified susceptible animals for the SARS-CoV-2, cats are also the vulnerable hosts for feline coronaviruses, ie feline enteric coronavirus (FECV). Here, to understand the cross-presentation of coronavirus-derived peptides by cat major histocompatibility complex molecule feline leucocyte antigen (FLA) class I, unpredictable natural peptide motifs presented by FLA-K*00701 and FLA-E*00301 were identified through peptide elution and further confirmed by the structural determination of the 2 FLA class I molecules. Based on these precise motifs of FLA class I peptides, the atlas of cross-presenting peptides from different coronaviruses in cats were sketched with 3 hotspots in C-terminal half of ORF1ab protein.
View Article and Find Full Text PDFInt J Cancer
March 2025
Center for Epigenetics & Disease Prevention, Texas A&M HEALTH, and Department of Translational Medical Sciences, Texas A&M University Naresh K. Vashisht College of Medicine, Houston, Texas, USA.
A previously reported clinical trial in familial adenomatous polyposis (FAP) patients treated with erlotinib plus sulindac (ERL + SUL) highlighted immune response/interferon-γ signaling as a key pathway. In this study, we combine intermittent low-dose ERL ± SUL treatment in the polyposis in rat colon (Pirc) model with mechanistic studies on tumor-associated immune modulation. At clinically relevant doses, short-term (16 weeks) and long-term (46 weeks) ERL ± SUL administration results in near-complete tumor suppression in Pirc colon and duodenum (p < 0.
View Article and Find Full Text PDFFront Immunol
March 2025
Immunogenetics/HLA Laboratory, Bloodworks Northwest, Seattle, WA, United States.
Introduction: The presence of donor-specific antibody (dnDSA) has detrimental effect on allograft outcomes in kidney transplantation. As humoral responses in transplantation are elicited targeting non-self-epitopes on donor HLA proteins, assessing HLA mismatches at the molecular level provides a refined means for immunological risk stratification.
Methods: In the present study, we utilized three HLA molecular mismatch assessment algorithms, Snow, HLAMatchmaker, and PIRCHE-II, to evaluate the independent and synergistic association of B cell and T cell epitope mismatches with dnDSA development in a cohort of 843 kidney transplant recipients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.