Glycosaminoglycans (GAGs) play important roles in cell adhesion and growth, maintenance of extracellular matrix (ECM) integrity, and signal transduction. To fully understand the biological functions of GAGs, there is a growing need for sensitive, rapid, and quantitative analysis of GAGs. The present work describes a novel analytical technique that enables high throughput cellular/tissue glycosaminoglycomics for all three families of uronic acid-containing GAGs, hyaluronan (HA), chondroitin sulfate (CS)/dermatan sulfate (DS), and heparan sulfate (HS). A one-pot purification and labeling procedure for GAG Δ-disaccharides was established by chemo-selective ligation of disaccharides onto high density hydrazide beads (glycoblotting) and subsequent labeling by fluorescence. The 17 most common disaccharides (eight comprising HS, eight CS/DS, and one comprising HA) could be separated with a single chromatography for the first time by employing a zwitter-ionic type of hydrophilic-interaction chromatography column. These novel analytical techniques were able to precisely characterize the glycosaminoglycome in various cell types including embryonal carcinoma cells and ocular epithelial tissues (cornea, conjunctiva, and limbus).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac2021079 | DOI Listing |
BMC Pulm Med
January 2025
Research Center of Occupational Medicine, Peking University Third Hospital, Beijing, 100191, China.
Objective: This study investigated pathogenic role and mechanism of extracellular histone H4 during oleic acid (OA)-induced acute respiratory distress syndrome (ARDS).
Methods: ARDS was induced by intravenous injection of OA in mice, and evaluated by blood gas, pathological analysis, lung edema, and survival rate. Heparan sulfate (HS) degradation was evaluated using immunofluorescence and flow cytometry.
Elife
January 2025
Departments of Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, United States.
Wnt/β-catenin signaling directs animal development and tissue renewal in a tightly controlled, cell- and tissue-specific manner. In the mammalian central nervous system, the atypical ligand Norrin controls angiogenesis and maintenance of the blood-brain barrier and blood-retina barrier through the Wnt/β-catenin pathway. Like Wnt, Norrin activates signaling by binding and heterodimerizing the receptors Frizzled (Fzd) and low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), leading to membrane recruitment of the intracellular transducer Dishevelled (Dvl) and ultimately stabilizing the transcriptional coactivator β-catenin.
View Article and Find Full Text PDFBioorg Med Chem
December 2024
Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, via G. Colombo 81, 20133 Milano, Italy.
Sci Rep
December 2024
Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149, Münster, Germany.
The heparan sulfate (HS)-rich extracellular matrix (ECM) serves as an initial interaction site for the homotrimeric spike (S) protein of SARS-CoV-2 to facilitate subsequent docking to angiotensin-converting enzyme 2 (ACE2) receptors and cellular infection. More recent variants, notably Omicron, have evolved by swapping several amino acids to positively charged residues to enhance the interaction of the S-protein trimer with the negatively charged HS. However, these enhanced interactions may reduce Omicron's ability to move through the HS-rich ECM to effectively find ACE2 receptors and infect cells, raising the question of how to mechanistically explain HS-associated viral movement.
View Article and Find Full Text PDFGenetics
December 2024
Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!