Norovirus (NoV) -derived virus-like particles (VLPs) resemble empty shells of the virus and NoV P-particles contain only protruding domains of the NoV capsid. Both NoV-derived subviral particles show similar functionality and antigenicity in vitro and are considered to be potential vaccine candidates against NoV gastroenteritis. BALB/c mice were immunized with baculovirus-produced GII-4 VLPs or the corresponding Escherichia coli-produced P-particles by the intramuscular or intradermal route and the NoV-specific antibody and T-cell immune responses were compared. Elevated antibody levels were induced with a single VLP immunization, whereas P-particle immunization required a boost. High avidity antibodies were raised only by VLP immunization. VLP immunization resulted in a balanced T helper type 1/type 2 immune response whereas P-particles induced a T helper type 2-biased response. Only VLP immunization primed T cells for interferon-γ production. Most importantly, cross-reactive B and T cells were induced solely by VLP immunization. In addition, VLP antiserum blocked the binding of heterotypic VLPs to human histo-blood group antigen receptor and saliva. The findings in this study are relevant for the development of NoV vaccines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3246655 | PMC |
http://dx.doi.org/10.1111/j.1365-2567.2011.03516.x | DOI Listing |
mSphere
January 2025
Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.
Malaria is a highly lethal infectious disease caused by parasites. These parasites are transmitted to vertebrate hosts when mosquitoes of the genus probe for a blood meal. Sporozoites, the infectious stage of , transit to the liver within hours of injection into the dermis.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China.
Background: The development of a protective vaccine is critical for conclusively ending the human immunodeficiency virus (HIV) epidemic.
Methods: We constructed nucleotide-modified mRNA vaccines expressing HIV-1 Env and Gag proteins. Env-gag virus-like particles (VLPs) were generated through co-transfection with env and gag mRNA vaccines.
Vaccines (Basel)
January 2025
Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
Background: Noroviruses, which cause epidemic acute gastroenteritis, and parasites, which lead to malaria, are two infectious pathogens that pose threats to public health. The protruding (P) domain of norovirus VP1 and the αTSR domain of the circumsporozoite protein (CSP) of sporozoite are the glycan receptor-binding domains of the two pathogens for host cell attachment, making them excellent targets for vaccine development. Modified norovirus P domains self-assemble into a 24-meric octahedral P nanoparticle (P NP).
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
Background: Foot-and-mouth disease (FMD) causes significant economic losses, prompting vaccination as a primary control strategy. Virus-like particles (VLPs) have emerged as promising candidates for FMD vaccines but require adjuvants to enhance their immunogenicity. In this study, we evaluated the immunogenicity of a VLP-based vaccine with a water-in-oil-in-water (W/O/W) emulsion adjuvant, named WT.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Discipline of Intelligent Instrument and Equipment, Department of Experimental Medicine, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China.
The numerous high-risk carcinogenic types of human papillomavirus (HR-HPV) that lack vaccine protection underscore the urgent need to develop broader-spectrum HPV vaccines. This study addresses this need by focusing on HR-HPV types 53, 56, and 66, which are not currently targeted by existing vaccines. It introduces an effective method for their soluble expression, as well as that of their mutants, within an Escherichia coli expression system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!