An efficacious tuberculosis (TB) vaccine will probably need to induce both CD4 and CD8 T-cell responses specific to a protective Mycobacterium tuberculosis antigen(s). To achieve this broad cellular immune response we tested a heterologous DNA/protein combination vaccine strategy. We used a purified recombinant protein preparation of a unique M. tuberculosis antigen (rMT1721) found in the urine of TB patients, an optimized plasmid DNA expressing this protein (DNA-MT1721), and a Toll-like receptor 4 agonist adjuvant. We found that priming mice with DNA-MT1721 and subsequently boosting with rMT1721 elicited high titres of specific IgG1 and IgG2a antibodies as well as high magnitude and polyfunctional CD4(+) T-cell responses. However, no detectable CD8(+) T-cell response was observed using this regimen of immunization. In contrast, both CD4(+) and CD8(+) T-cell responses were detected after a prime/boost vaccination regimen using rMT1721 as the priming antigen and DNA-MT1721 as the boosting immunogen. These findings support the exploration of heterologous DNA/protein immunization strategies in vaccine development against TB and possibly other infectious diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3311044 | PMC |
http://dx.doi.org/10.1111/j.1365-2567.2011.03525.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!