Objectives: We examined geographic patterns of lung cancer incidence in Kentucky. Recent research has suggested that the coal-mining industry contributes to lung cancer risk in Appalachia. We focused on the southeastern portion of the state, which has some of the highest lung cancer rates in the nation.

Methods: We implemented a spatial scan statistic to identify areas with lung cancer incidence rates that were higher than expected, after adjusting for age, gender, and smoking. The Kentucky Cancer Registry supplied information on cases (1995-2007). The U.S. Census (2000) and several years of Behavioral Risk Factor Surveillance System data (1996-2006) provided county-level population and smoking data. We compared the results with coal-mining data from the Mining Safety and Health Administration and public water utility data from the Kentucky Division of Water.

Results: We identified three clusters of counties with higher-than-expected rates. Cluster 1 (relative risk [RR] = 1.21, p<0.01) included 12 counties in southeastern Kentucky. Cluster 2 (RR=1.17, p<0.01) included three nearby counties in the same region. Several of the 15 counties in Cluster 3 (RR=1.04, p=0.01) were part of the Louisville, Kentucky, or Cincinnati, Ohio, metropolitan areas. All of the counties in Clusters 1 and 2 produced significant amounts of coal.

Conclusion: Environmental exposures related to the coal-mining industry could contribute to the high incidence of lung cancer in southeastern Kentucky. Lack of evidence for this effect in western Kentucky could be due to regional differences in mining practices and access to public water utilities. Future research should collect biological specimens and environmental samples to test for the presence of trace elements and other lung carcinogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3185314PMC
http://dx.doi.org/10.1177/003335491112600604DOI Listing

Publication Analysis

Top Keywords

lung cancer
20
cancer incidence
12
incidence kentucky
8
spatial scan
8
scan statistic
8
cancer
6
lung
5
exploring geographic
4
geographic variation
4
variation lung
4

Similar Publications

Newly Proposed Dose of Daclatasvir to Prevent Lethal SARS-CoV-2 Infection in Human Transgenic ACE-2 Mice.

Viruses

November 2024

Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil.

Coronavirus disease 2019 (COVID-19) still causes death in elderly and immunocompromised individuals, for whom the sustainability of the vaccine response may be limited. Antiviral treatments, such as remdesivir or molnupiravir, have demonstrated limited clinical efficacy. Nirmatrelvir, an acute respiratory syndrome coronavirus 2 (SARS-CoV-2) major protease inhibitor, is clinically effective but has been associated with viral rebound and antiviral resistance.

View Article and Find Full Text PDF

Combining radiotherapy with targeted therapy benefits patients with advanced epidermal growth factor receptor-mutated non-small cell lung cancer (EGFRm NSCLC). However, the optimal strategy to combine EGFR tyrosine kinase inhibitors (TKIs) with radiotherapy for maximum efficacy and minimal toxicity is still uncertain. Notably, EVs, which serve as communication mediators among tumor cells, play a crucial role in the anti-tumor immune response.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) is the predominant form of lung cancer and poses a significant public health challenge. Early detection is crucial for improving patient outcomes, with serum biomarkers such as carcinoembryonic antigen (CEA), squamous cell carcinoma antigen (SCCAg), and cytokeratin fragment 19 (CYFRA 21-1) playing a critical role in early screening and pathological classification of NSCLC. However, due to being mainly based on corresponding antibody binding reactions, existing detection technologies for these serum biomarkers have shortcomings such as complex operations, high false positive rates, and high costs.

View Article and Find Full Text PDF

Here, we report on the synthesis and biological evaluation of a novel peptide-drug conjugate, P6-SN38, which consists of the EGFR-specific short cyclic peptide, P6, and the Topo I inhibitor SN38, which is a bioactive metabolite of the anticancer drug irinotecan. SN38 is attached to the peptide at position 20 of the E ring's tertiary hydroxyl group via a mono-succinate linker. The developed peptide-drug conjugate (PDC) exhibited sub-micromolar anticancer activity on EGFR-positive (EGFR+) cell lines but no effect on EGFR-negative (EGFR-) cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!