Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The application of low-power laser irradiation (LLI) affects the cell cycle and cell proliferation in various kinds of cells. LLI at a wavelength of 808 nm and a power of 30 mW has been found to significantly decrease the proliferation rate of cells of the human-derived glioblastoma cell line A-172. To determine if this effect of LLI is specific to 808-nm LLI, the present study was designed to reveal the effects of 405-nm LLI under the same experimental conditions. A-172 glioblastoma cells were cultured in 96-well plates according to the conventional protocol. Two different schedules of 405-nm LLI (27 mW) were tested: longer periods of 20, 40 and 60 min and shorter periods of 1, 2, 3, 5, 10 and 15 min. Cells on a digital image displayed on a computer monitor were counted and the proliferation ratio was determined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) staining. Annexin-V-FLUOS staining and acridine-orange/ethidium-bromide staining were in an immunocytochemical assay to determine if cells were viable or dead (due to apoptosis or necrosis). Cell counting and MTT staining showed that longer 405-nm LLI significantly suppressed the proliferation of A-172 cells at 48 h after LLI (p < 0.05 or p < 0.01) and that the effect of LLI tended to be dose-dependent with morphological changes including cell death. At 90 min after LLI, shorter 405-nm LLI caused necrotic as well as apoptotic cell death, and these effects depended on irradiation time, power and energy density. Detailed analysis revealed that this lethal effect occurred after LLI and was not sustainable. It is concluded that 405-nm LLI has a lethal effect on human-derived glioblastoma A-172 cells, that is different from the suppressive effect without morphological changes induced by 808-nm LLI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10103-011-1009-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!