Inflammation and septic shock due to endotoxins from Gram-negative bacteria infection continue to pose significant challenges to human healthcare. It is, therefore, necessary to develop therapeutic strategies targeting endotoxins, such as lipopolysaccharide (LPS), to prevent their potentially systemic effects. Pathogenesis due to Gram-negative bacteria involves LPS binding to the host LPS-binding protein (LBP), causing detrimental downstream signaling cascades. Our previous study showed that CLP-19, a synthetic peptide derived from the Limulus anti-LPS factor (LALF), could effectively neutralize LPS toxicity; however, the detailed mechanisms underlying this anti-LPS effect remained unexplained. Thus, we carried out investigations to determine how the CLP-19 neutralizes LPS toxicity. CLP-19 was found to block LPS binding to LBP in a dose-dependent manner, as evidenced by competitive enzyme-linked immunosorbent assay (ELISA). In peripheral blood mononuclear cells, CLP-19 blocked LPS-induced phosphorylation of mitogen activated protein kinase (MAPK) signaling proteins p38, extracellular signal-regulating kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK)1/2. Furthermore, CLP-19 potency in LPS antagonism in vitro and in vivo was directly associated with its ability to block the LPS-LBP interaction. Taken together, the results suggested that CLP-19's inhibitory effect on LPS-LBP binding and on the subsequent MAPK pathway signaling may be responsible for its anti-LPS mechanism. This peptide appears to represent a potential therapeutic agent for clinical treatment of sepsis.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.34.1678DOI Listing

Publication Analysis

Top Keywords

lps binding
12
lps
9
gram-negative bacteria
8
lps toxicity
8
clp-19
6
binding
5
cyclic limulus
4
limulus anti-lipopolysaccharide
4
anti-lipopolysaccharide lps
4
lps factor-derived
4

Similar Publications

Background: In neurodegenerative disease such as Alzheimer's disease and stroke, the brain transitions to pro-inflammatory profile, where microglia and T-cells in the brain have increase inflammatory profiles, along with increased Kv1.3 potassium channel abundance. Pharmacological blockade of Kv1.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Aligarh Muslim University, Aligarh, UttarPradesh, India.

Background: Following the genome-wide association studies (GWAS) discovery of microglia-specific genes, particularly Trem-2, SHIP-1, and CD33, significantly associated with higher Alzheimer's disease (AD) risk, the microglia TREM2 pathway has become central for regulating amyloid load, tissue damage, and limiting its spread. These discoveries have opened up the exciting possibility of therapeutic microglia TREM2 manipulation in AD. To date, however, several elements of TREM2 signaling remain unknown, ranging from the temporal activation pattern and receptor-ligand binding to modulation of the brain microenvironment.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Neurology, Columbia University, New York, NY, USA.

Background: Lipid dysregulation is a known feature of Alzheimer's Disease. Importantly, alterations in lipids pathways affect immune responses in cells like microglia, which have been shown to accumulate cholesterol in both aging and neurodegeneration. Recently, the presence of TDP-43 inclusions has been linked to increased severity of cognitive impairment in AD patients.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Neurology, Columbia University, New York, NY, USA.

Background: While dysregulated local innate immunity and microglial dysfunction are thought to play a pathogenic role in Alzheimer's disease (AD), the underlying mechanisms remain unclear. Importantly, activation of immune and metabolic pathways in myeloid cells can lead to a functional reprogramming process, termed innate immune memory (IIM), in which the response to an initial stimulus shapes long-lasting epigenetic modifications that alter the response to future inflammatory stimuli. This epigenetic imprinting process has been minimally studied in microglia.

View Article and Find Full Text PDF

The emergence of SARS-CoV-2 variants of concern (VOCs) has greatly diminished the neutralizing activity of previously FDA-approved monoclonal antibodies (mAbs), including that of antibody cocktails and of first-generation broadly neutralizing antibodies such as S309 (Sotrovimab). In contrast, antibodies targeting cryptic conformational epitopes of the receptor binding domain (RBD) have demonstrated broad activity against emerging variants, but exert only moderate neutralizing activity, which has so far hindered clinical development. Here, we utilize in vitro display technology to identify and affinity-mature antibodies targeting the cryptic class 6 epitope, accessible only in the "up" conformation of the SARS-CoV-2 spike trimer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!