Background: Biological invasions are a major ecological and socio-economic problem in many parts of the world. Despite an explosion of research in recent decades, much remains to be understood about why some species become invasive whereas others do not. Recently, polyploidy (whole genome duplication) has been proposed as an important determinant of invasiveness in plants. Genome duplication has played a major role in plant evolution and can drastically alter a plant's genetic make-up, morphology, physiology and ecology within only one or a few generations. This may allow some polyploids to succeed in strongly fluctuating environments and/or effectively colonize new habitats and, thus, increase their potential to be invasive.
Scope: We synthesize current knowledge on the importance of polyploidy for the invasion (i.e. spread) of introduced plants. We first aim to elucidate general mechanisms that are involved in the success of polyploid plants and translate this to that of plant invaders. Secondly, we provide an overview of ploidal levels in selected invasive alien plants and explain how ploidy might have contributed to their success.
Conclusions: Polyploidy can be an important factor in species invasion success through a combination of (1) 'pre-adaptation', whereby polyploid lineages are predisposed to conditions in the new range and, therefore, have higher survival rates and fitness in the earliest establishment phase; and (2) the possibility for subsequent adaptation due to a larger genetic diversity that may assist the 'evolution of invasiveness'. Alternatively, polyploidization may play an important role by (3) restoring sexual reproduction following hybridization or, conversely, (4) asexual reproduction in the absence of suitable mates. We, therefore, encourage invasion biologists to incorporate assessments of ploidy in their studies of invasive alien species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241594 | PMC |
http://dx.doi.org/10.1093/aob/mcr277 | DOI Listing |
Front Plant Sci
December 2024
Department of Life Sciences, Changzhi University, Changzhi, China.
is a traditional Chinese medicinal herb rich in various bioactive secondary metabolites, such as alkaloids and flavonoids, and exhibits remarkable resistance to abiotic stress. The WRKY transcription factor (TF) family is one of the largest plant-specific TF families and plays a crucial role in plant growth, development, and responses to abiotic stress. However, a comprehensive genome-wide analysis of the WRKY gene family in has not yet been conducted.
View Article and Find Full Text PDFFront Plant Sci
December 2024
National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.
Transfer RNAs (tRNAs) are noncoding RNAs involved in protein biosynthesis and have noncanonical roles in cellular metabolism, such as RNA silencing and the generation of transposable elements. Extensive tRNA gene duplications, modifications to mature tRNAs, and complex secondary and tertiary structures impede tRNA sequencing. As such, a comparative genomic analysis of complete tRNA sets is an alternative to understanding the evolutionary processes that gave rise to the extant tRNA sets.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada.
Tay-Sachs disease is a fatal neurodegenerative disorder caused by mutations inactivating the metabolic enzyme HexA. The most common mutation is c.1278insTATC, a tandem 4-bp duplication disrupting expression by frameshift.
View Article and Find Full Text PDFEur J Neurol
January 2025
Folkhalsan Research Center, Helsinki, Finland.
Background: myotilinopathy is a very rare inherited muscle disease that belongs to the group of myofibrillar myopathies. These diseases share a common alteration of the sarcomere organization at the level of the Z disk resulting in pathological protein aggregation, autophagic abnormalities, and ultimately muscle degeneration. Most reported cases are due to dominant missense mutations in the MYOT gene, two of which are largely recurrent.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Thoracic Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Cancer Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
SIRT6, a member of the sirtuin protein family, is recognized as a tumor suppressor. This study investigates the evolutionary history of the SIRT gene family and examines the selective pressures shaping their functional divergence. Insights into the evolution of these genes may enhance our understanding of their roles in disease pathology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!