A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Many tests of significance: new methods for controlling type I errors. | LitMetric

Many tests of significance: new methods for controlling type I errors.

Psychol Methods

Department of Psychology, University of Manitoba, Winnipeg, Manitoba, Canada.

Published: December 2011

There have been many discussions of how Type I errors should be controlled when many hypotheses are tested (e.g., all possible comparisons of means, correlations, proportions, the coefficients in hierarchical models, etc.). By and large, researchers have adopted familywise (FWER) control, though this practice certainly is not universal. Familywise control is intended to deal with the multiplicity issue of computing many tests of significance, yet such control is conservative--that is, less powerful--compared to per test/hypothesis control. The purpose of our article is to introduce the readership, particularly those readers familiar with issues related to controlling Type I errors when many tests of significance are computed, to newer methods that provide protection from the effects of multiple testing, yet are more powerful than familywise controlling methods. Specifically, we introduce a number of procedures that control the k-FWER. These methods--say, 2-FWER instead of 1-FWER (i.e., FWER)--are equivalent to specifying that the probability of 2 or more false rejections is controlled at .05, whereas FWER controls the probability of any (i.e., 1 or more) false rejections at .05. 2-FWER implicitly tolerates 1 false rejection and makes no explicit attempt to control the probability of its occurrence, unlike FWER, which tolerates no false rejections at all. More generally, k-FWER tolerates k - 1 false rejections, but controls the probability of k or more false rejections at α =.05. We demonstrate with two published data sets how more hypotheses can be rejected with k-FWER methods compared to FWER control.

Download full-text PDF

Source
http://dx.doi.org/10.1037/a0025810DOI Listing

Publication Analysis

Top Keywords

false rejections
20
tests significance
12
type errors
12
probability false
12
tolerates false
12
controlling type
8
fwer control
8
controls probability
8
control
7
false
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!