Purpose: To characterize proliferative changes in tumors during the sunitinib malate exposure/withdrawal using 3'-deoxy-3'-[(18)F]fluorothymidine (FLT) positron emission tomography (PET)/computed tomography (CT) imaging.
Patients And Methods: Patients with advanced solid malignancies and no prior anti-VEGF exposure were enrolled. All patients had metastatic lesions amenable to FLT PET/CT imaging. Sunitinib was initiated at the standard dose of 50 mg p.o. daily either on a 4/2 or 2/1 schedule. FLT PET/CT scans were obtained at baseline, during sunitinib exposure, and after sunitinib withdrawal within cycle #1 of therapy. VEGF levels and sunitinib pharmacokinetic (PK) data were assessed at the same time points.
Results: Sixteen patients (8 patients on 4/2 schedule and 8 patients on 2/1 schedule) completed all three planned FLT PET/CT scans and were evaluable for pharmacodynamic imaging evaluation. During sunitinib withdrawal (change from scans 2 to 3), median FLT PET standardized uptake value (SUV(mean)) increased +15% (range: -14% to 277%; P = 0.047) for the 4/2 schedule and +19% (range: -5.3% to 200%; P = 0.047) for the 2/1 schedule. Sunitinib PK and VEGF ligand levels increased during sunitinib exposure and returned toward baseline during the treatment withdrawal.
Conclusions: The increase of cellular proliferation during sunitinib withdrawal in patients with renal cell carcinoma and other solid malignancies is consistent with a VEGF receptor (VEGFR) tyrosine kinase inhibitor (TKI) withdrawal flare. Univariate and multivariate analysis suggest that plasma VEGF is associated with this flare, with an exploratory analysis implying that patients who experience less clinical benefit have a larger withdrawal flare. This might suggest that patients with a robust compensatory response to VEGFR TKI therapy experience early "angiogenic escape."
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243764 | PMC |
http://dx.doi.org/10.1158/1078-0432.CCR-11-1677 | DOI Listing |
Radiol Imaging Cancer
January 2025
From the Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE 10th St, Oklahoma City, OK 73104 (J.H.C., L.M., S.K.V., Z.H., M.P., J.G., Y.W.); Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY (J.L., J.F.); Department of Biostatistics and Epidemiology, Hudson College of Public Health, The University of Oklahoma, Oklahoma City, Okla (S.K.V., T.G.); Experimental Transplantation and Immunotherapy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Md (C.G.K., R.G.); Department of Biomedical Engineering, University of Central Oklahoma, Edmond, Okla (Z.H.); and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA (K.M.W.).
Purpose To determine whether fluorine 18 (F) fluorothymidine (FLT) PET imaging alone or combined with Mount Sinai Acute GVHD International Consortium (MAGIC) biomarkers could help identify subclinical gastrointestinal graft versus host disease (GI-GVHD) by day 100 following hematopoietic stem cell transplantation (HSCT). Materials and Methods F-FLT PET imaging was analyzed in a prospective pilot study (ClinicalTrials.gov identifier no.
View Article and Find Full Text PDFMol Diagn Ther
January 2025
Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
Mesothelioma is a malignant tumor associated primarily with asbestos exposure, characterized by an aggressive nature and poor prognosis. Accurate diagnosis, staging, and monitoring of therapeutic response are crucial for effective patient management. Along with a computed tomography (CT) scan, fluorodeoxyglucose labeled with fluorine-18 ([F]FDG) positron emission tomography (PET) is commonly used in mesothelioma evaluation.
View Article and Find Full Text PDFMycobacterium tuberculosis (TB) disease is a major global health problem affecting 10.6 million people worldwide, and India alone contributes 28% to this burden. Pancreatic TB is considered an extremely rare entity which closely mimics pancreatic carcinoma.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
February 2025
Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
Purpose: F-fluorothymidine (FLT) positron emission tomography (PET) enables sensitive imaging of bone marrow (BM) proliferation. Sequential FLT-PET/computed tomography scans before and during chemoradiation therapy (CRT) for non-small cell lung cancer were repurposed to investigate the dose-response effects of radiation on BM proliferation.
Methods And Materials: Twenty-six non-small cell lung cancer patients underwent platinum-based CRT to 60 Gy in 30 fractions with FLT-PET/computed tomography scans at baseline, week 2 (20 Gy), and week 4 (40 Gy).
Nucl Med Mol Imaging
June 2024
Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea.
Positron emission tomography/computed tomography (PET/CT) has dramatically altered the landscape of noninvasive glioma evaluation, offering complementary insights to those gained through magnetic resonance imaging (MRI). PET/CT scans enable a multifaceted analysis of glioma biology, supporting clinical applications from grading and differential diagnosis to mapping the full extent of tumors and planning subsequent treatments and evaluations. With a broad array of specialized radiotracers, researchers and clinicians can now probe various biological characteristics of gliomas, such as glucose utilization, cellular proliferation, oxygen deficiency, amino acid trafficking, and reactive astrogliosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!