A spherosilicate dendrimer (DMS-1) with closely spaced reaction sites (Si-H groups) on the dendrimer surface has been synthesized by stepwise silylation of double-four-ring silicate with chlorotriethoxysilane (ClSi(OEt)(3)) and subsequently with chlorodimethylsilane (ClSiHMe(2)). DMS-1 consists of a maximum of 40 Si atoms in the interior frameworks and 24 reactive Si-H groups on the surface. Because DMS-1 is spherical and about 1.5 nm in diameter, it can be regarded as the smallest well-defined silica-based nanoparticle. DMS-1 also forms molecular crystals and is soluble in typical organic solvents. A molecularly ordered silica-based hybrid can be prepared by heating a cast film of DMS-1 at 180 °C for 5 days. The surface of DMS-1 can be modified by hydrosilylation with 1-hexadecene, triethoxyvinylsilane, and allylic-terminated tetraethylene glycol monomethyl ether. More than 20 Si-H groups out of 24 react with these reagents. The solubilities of the products depend on the modification. DMS-1 is not only a building block for nanohybrids, but also the smallest and most precisely designed siloxane-based nanoparticle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201102205 | DOI Listing |
Adv Mater
January 2025
Liquid Crystals and Photonics Group, Department of Electronics and Information Systems, Ghent University, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium.
In liquid crystal (LC) cells, the surface patterning directs the self-assembly of the uniaxial building blocks in the bulk, enabling the design of stimuli-response optical devices with various functionalities. The combination of different anchoring patterns at both substrates can lead to surface induced frustration, preventing a purely planar and defect-free configuration. In cells with crossed assembly of rotating anchoring patterns, elastic deformations allow to obtain a defect-free bulk configuration, but an electrical stimulus can induce disclination lines.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, 119121 Moscow, Russia.
This study aimed to investigate whether the water-soluble pharmaceutical form of phosphatidylcholine nanoparticles (wPC) stimulated the catalytic activity of CYP enzymes 2C9 and 2D6. We have shown that electroenzymatic CYP2C9 catalysis to nonsteroidal anti-inflammatory drug naproxen as a substrate was enhanced from 100% to 155% in the presence of wPC in media. Electroenzymatic CYP2D6 activity in the presence of the adrenoceptor-blocking agent bisoprolol as a substrate was elevated significantly from 100% to 144% when wPC was added to potassium phosphate buffer solution.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Educational Science, University of Helsinki, 00014 Helsinki, Finland.
Cellulose is a homopolymer composed of β-glucose units linked by 1,4-beta linkages in a linear arrangement, providing its structure with intermolecular H-bonding networking and crystallinity. The participation of hydroxy groups in the H-bonding network results in a low-to-average nucleophilicity of cellulose, which is insufficient for executing a nucleophilic reaction. Importantly, as a polyhydroxy biopolymer, cellulose has a high proportion of hydroxy groups in secondary and primary forms, providing it with limited aqueous solubility, highly dependent on its form, size, and other materialistic properties.
View Article and Find Full Text PDFMolecules
December 2024
Chair for Integrated Systems and Photonics, Department of Electrical and Information Engineering, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany.
Biological neural circuits are based on the interplay of excitatory and inhibitory events to achieve functionality. Axons form long-range information highways in neural circuits. Axon pruning, i.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
Objective: This study aimed to investigate the efficacy of M3-DPPE liposomal nanoparticles encapsulated with mRNA encoding cytokines (M3-mRNAs) in targeting macrophages for the treatment of inflammation-induced joint injury.
Methods: , M3-mRNAs were administered to peritoneal exudate macrophages (PEMs), and the uptake was assessed using flow cytometry. The mechanism of uptake was investigated by blocking the CLEC12A pathway with M3-SiCLEC12A and observing CD206-mediated endocytosis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!