Aims/hypothesis: Aggregation of human islet amyloid polypeptide (hIAPP) as islet amyloid is associated with increased beta cell apoptosis and reduced beta cell mass in type 2 diabetes. Islet amyloid formation induces oxidative stress, which contributes to beta cell apoptosis. The cJUN N-terminal kinase (JNK) pathway is a critical mediator of beta cell apoptosis in response to stress stimuli including oxidative stress and exogenous application of hIAPP. We determined whether amyloid formation by endogenous hIAPP mediates beta cell apoptosis through JNK activation and downstream signalling pathways.
Methods: hIAPP transgenic and non-transgenic mouse islets were cultured for up to 144 h in 16.7 mmol/l glucose to induce islet amyloid in the presence or absence of the amyloid inhibitor Congo Red or a cell-permeable JNK inhibitor. Amyloid, beta cell apoptosis, JNK signalling and activation of downstream targets in the intrinsic and extrinsic apoptotic pathways were measured.
Results: JNK activation occurred with islet amyloid formation in hIAPP transgenic islets after 48 and 144 h in culture. Neither high glucose nor the hIAPP transgene alone was sufficient to activate JNK independent of islet amyloid. Inhibition of islet amyloid formation with Congo Red reduced beta cell apoptosis and partially decreased JNK activation. JNK inhibitor treatment reduced beta cell apoptosis without affecting islet amyloid. Islet amyloid increased mRNA levels of markers of the extrinsic (Fas, Fadd) and intrinsic (Bim [also known as Bcl2l11]) apoptotic pathways, caspase 3 and the anti-apoptotic molecule Bclxl (also known as Bcl2l1) in a JNK-dependent manner.
Conclusions/interpretation: Islet amyloid formation induces JNK activation, which upregulates predominantly pro-apoptotic signals in both extrinsic and intrinsic pathways, resulting in beta cell apoptosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249975 | PMC |
http://dx.doi.org/10.1007/s00125-011-2338-7 | DOI Listing |
Nanoscale
January 2025
Department of Engineering Mechanics, Hohai University, Nanjing 211100, P.R. China.
The aberrant aggregation of the human islet amyloid polypeptide (hIAPP) is a hallmark of type II diabetes. LL37, the only cathelicidin host-defense peptide in humans, plays essential roles in antimicrobial and immunomodulatory activities. Mounting evidence indicates that LL37 can inhibit the amyloid aggregation of hIAPP, suggesting possible interplays between infections and amyloid diseases while the mechanism remains unclear.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico.
Diabetes Mellitus Type 1 (DM1) is an autoimmune disease characterized by the destruction of beta cells in the pancreas. Although amyloid formation has been well-studied in Diabetes Mellitus Type 2 (DM2), its role in DM1 remains unclear. Understanding how islet amyloid polypeptide (IAPP) contributes to beta cell dysfunction and death in DM1 could provide critical insights into disease mechanisms and pave the way for novel diagnostic and therapeutic strategies.
View Article and Find Full Text PDFBiomolecules
January 2025
School of Systems Biology, George Mason University, Fairfax, VA 22030, USA.
Amylin and amyloid β belong to the same protein family and activate the same receptors. Amyloid β levels are elevated in Alzheimer's disease. Recent studies have demonstrated that amylin-based peptides can reduce the symptoms of Alzheimer's disease in animal models.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Technische Universität München, Division of Peptide Biochemistry, Emil-Erlenmeyer-Forum 5, 85354, Freising, GERMANY.
Amyloid self-assembly of α-synuclein (αSyn) is linked to the pathogenesis of Parkinson's disease (PD). Type 2 diabetes (T2D) has recently emerged as a risk factor for PD. Cross-interactions between their amyloidogenic proteins may act as molecular links.
View Article and Find Full Text PDFHuman amylin, called also islet amyloid polypeptide (hIAPP), is the principal constituent of amyloid deposits in the pancreatic islets. Together with hyperglycemia, hIAPP-derived oligomers and aggregates are important culprits in type 2 diabetes mellitus (T2DM). Preventing aggregation, and in particular inhibiting the formation and/or stimulating degradation of toxic amylin oligomers formed early in the process, may reduce the negative effects of T2DM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!