Antilithic effects of extracts from Urtica dentata hand on calcium oxalate urinary stones in rats.

J Huazhong Univ Sci Technolog Med Sci

Department of Pharmaceutics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.

Published: October 2011

This study examined the potential antilithic effects of a traditional Chinese medicine Urtica dentata Hand (UDH) in experimental rats and screened the optimal extract of UDH as a possible therapeutic agent for kidney stones. The rat model of urinary calcium oxalate stones was induced by intragastric (i.g.) administration of 2 mL of 1.25% ethylene glycol (EG) and 1% ammonium chloride (AC) for 28 days and was confirmed by Color Doppler ultrasound imaging. The rats in different experimental groups were then intragastrically given petroleum ether extract (PEE), N-butanol extract (NBE), aqueous extract (AqE) of UDH, Jieshitong (positive control drug), and saline, respectively. Treatment with NBE significantly reduced the elevated levels of urinary calcium, uric acid, phosphate, as well as increased urinary output. Accordingly, the increased calcium, oxalate levels and the number of calcium oxalate crystals deposits were remarkably reverted in the renal tissue of NBE-treated rats. In addition, NBE also prevented the impairment of renal function to decrease the contents of blood urea nitrogen (BUN) and creatinine. Taken together, these data suggest that NBE of UDH has a beneficial effect on calcium oxalate urinary stones in rats by flushing the stones out and protecting renal function.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11596-011-0580-3DOI Listing

Publication Analysis

Top Keywords

calcium oxalate
20
antilithic effects
8
urtica dentata
8
dentata hand
8
oxalate urinary
8
urinary stones
8
stones rats
8
urinary calcium
8
renal function
8
calcium
6

Similar Publications

Purpose Of Review: Metabolic dysfunction associated steatotic liver disease (MASLD) is increasing throughout the world, affecting nearly one in three individuals. Kidney stone disease, which is also increasing, is associated with MASLD. Common risk factors for both, including obesity, diabetes, dyslipidemia, hypertension, and metabolic syndrome, are likely drivers of this association.

View Article and Find Full Text PDF

Hyperoxaluria, including primary and secondary hyperoxaluria, is a disorder characterized by increased urinary oxalate excretion and could lead to recurrent calcium oxalate kidney stones, nephrocalcinosis and eventually end stage renal disease. For secondary hyperoxaluria, high dietary oxalate (HDOx) or its precursors intake is a key reason. Recently, accumulated studies highlight the important role of gut microbiota in the regulation of oxalate homeostasis.

View Article and Find Full Text PDF

Vitamin C is an antioxidant and is essential for immune function and infection resistance. Supplementation is necessary when a sufficient amount of vitamin C is not obtained through the diet. Alternative formulations of vitamin C may enhance its bioavailability and retention over traditional ascorbic acid.

View Article and Find Full Text PDF

Ethylene glycol (C₂H₆O₂), a toxic alcohol commonly found in automotive antifreeze, de-icing solutions, and industrial coolants, can cause severe toxicity when ingested. Due to its sweet taste, it is often consumed accidentally or intentionally, leading to life-threatening consequences such as metabolic acidosis, acute kidney injury (AKI), and mortality. Prompt diagnosis and early treatment with antidotes such as fomepizole or ethanol, combined with hemodialysis, are essential in preventing severe outcomes.

View Article and Find Full Text PDF

The initiation of calcium oxalate (CaOx) kidney stone formation is highly likely to stem from injury to the renal tubular epithelial cells (RTECs) induced by stimulation from an aberrant urinary environment. CHAC1 plays a critical role in stress response mechanisms by regulating glutathione metabolism. Endoplasmic reticulum (ER) stress and ferroptosis are demonstrated to be involved in stone formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!