Here, we explore the single particle dynamics of superparamagnetic beads exposed to multifrequency ratchets. Through a combination of theory, simulation, and experiment, we determine the important tuning parameters that can be used to implement multiplexed separation of polydisperse colloidal mixtures. In particular, our results demonstrate that the ratio of driving frequencies controls the transition between open and closed trajectories that allow particles to be transported across a substrate. We also demonstrate that the phase difference between the two frequencies controls not only the direction of motion but also which particles are allowed to move within a polydisperse mixture. These results represent a fundamentally different approach to colloidal separation than the previous methods which are based on controlling transitions between phase-locked and phase-slipping regimes, and have a higher degree of multiplexing capabilities that can benefit the fields of biological separation and sensing as well as provide crucial insights into general ratchet behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1lc20683d | DOI Listing |
Talanta
January 2025
Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95122, Catania, Italy; INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d'Oro, 305, 00136, Roma, Italy. Electronic address:
Directly detecting biomarkers in liquid biopsy for diagnosis and personalized treatment plays a crucial role in managing cancer relapse and increasing survival rates. Typically, the standard analysis of circulating tumour DNA requires lengthy isolation, extraction, and amplification steps, leading to sample contamination, longer turnaround time and higher assay costs. Surface plasmon resonance is an emerging and promising technology for rapid and real-time dynamic biomarker monitoring in liquid biopsy.
View Article and Find Full Text PDFACS Meas Sci Au
December 2024
Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, Berlin D-12489, Germany.
Flow cytometry-based immunoassays are valuable in biomedical research and clinical applications due to their high throughput and multianalyte capability, but their adoption in areas such as food safety and environmental monitoring is limited by long assay times and complex workflows. Rapid, simplified bead-based cytometric immunoassays are needed to make these methods viable for point-of-need applications, especially with the increasing accessibility of miniaturized cytometers. This work introduces superparamagnetic hybrid polystyrene-silica core-shell microparticles as promising alternatives to conventional polymer beads in competitive cytometric immunoassays.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. Electronic address:
Magnetic polymer microspheres with superparamagnetism, high specificity, and monodispersity play a crucial role in the field of in vitro diagnostics. However, the surface modification process of magnetic beads is often complex, and it remains a significant challenge to prepare high-performance magnetic beads easily. To overcome these drawbacks, herein we fabricated functional interface on magnetic bead with the various amino acid via the ring-opening reaction of amino acids with epoxy groups, with attempt to produce carboxylated magnetic beads (MPS-GA) in a convenient way.
View Article and Find Full Text PDFSmall
November 2024
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
Noninvasive liquid biopsies can be used for early tumor diagnosis by identifying the methylation level of the tumor suppressor genes (TSGs)-a reliable index for cancer evaluation. However, identifying trace circulating genes from specimens remains challenging. This work introduces a novel method that combines magnetic isolation and surface-enhanced Raman scattering (SERS) to concentrate and detect the methylated TSG promotors.
View Article and Find Full Text PDFNanoscale
December 2024
Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark.
The assembly of hybrid nanoparticles is a pioneering route for developing nanoscale functional devices, enabling breakthroughs in various fields, including electronics, photonics, energy, sensing, and biomedical applications. Here, we focus on the templated assembly of nano-sized colloidal systems using a combination of silica-coated superparamagnetic beads (MBs) and polymer-coated gold nanoparticles (AuNPs) or silver nanoparticles (AgNPs). These hybrid nanoparticles introduce new functionalities that allow them to be used as nanomachines with numerous possible applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!