We have previously reported on hypoxia/reoxygenation-induced premature senescence in neonatal rat cardiomyocytes. In this research, we investigated the effects of p21(WAF1) (p21) in hypoxia/reoxygenation-induced senescence, using H9c2 cells. A plasmid overexpressing wild type p21(WAF1) and a plasmid expressing small hairpin RNA (shRNA) targeting p21(WAF1) were constructed, and transfected into H9c2 cells to control the p21 expression. Hypoxia/reoxygenation conditions were 1% O2 and 5% CO(2), balancing the incubator chamber with N(2) for 6 h (hypoxia 6 h), then 21% oxygen for 8 h (reoxygenation 8 h). Cell cycle was examined using flow cytometry. Senescence was assessed using β-galactosidase staining. The expression of p53, p21, p16(INK4a), and cyclin D1 was assayed using Western blotting. At hypoxia 6 h, cells overexpressing p21 had a larger G1 distribution, stronger β-galactosidase activity, and lower cyclin D1 expression compared to control cells, while the opposite results and higher p53 expression were obtained in p21-knockdown cells. At reoxygenation 8 h, p21-silenced cells had a smaller percentage of G1 cells, weaker β-galactosidase activity and lower 16(INK4a) expression, and higher cyclin D1 expression, but the overexpression group showed no difference. Taken together, this data implies that p21(WAF1) is important for the hypoxia phase, but not the reoxygenation phase, in the H9c2 senescence process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5603/fhc.2011.0063 | DOI Listing |
Folia Histochem Cytobiol
March 2012
Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
We have previously reported on hypoxia/reoxygenation-induced premature senescence in neonatal rat cardiomyocytes. In this research, we investigated the effects of p21(WAF1) (p21) in hypoxia/reoxygenation-induced senescence, using H9c2 cells. A plasmid overexpressing wild type p21(WAF1) and a plasmid expressing small hairpin RNA (shRNA) targeting p21(WAF1) were constructed, and transfected into H9c2 cells to control the p21 expression.
View Article and Find Full Text PDFJ Pediatr Surg
March 2010
Department of Pediatrics, School of Medicine, Dokuz Eylul University, Izmir, Turkey.
Background: Necrotizing enterocolitis is a devastating intestinal disease of premature infants. Although activated protein C (APC) is well defined as a physiologic anticoagulant, emerging data suggest that it also has cytoprotective, antiinflammatory, and antiapoptotic properties. There is no study on active protein C administration for necrotizing enterocolitis in animal models.
View Article and Find Full Text PDFBiol Neonate
June 2005
Department of Pediatrics, Ege University Medical School, Bornova, TR-35100 Izmir, Turkey.
Objective: Necrotizing enterocolitis (NEC) is a potentially lethal disease among premature infants. The aim of the present study was to investigate whether hypoxia-reoxygenation (H/R)-induced intestinal injury was due to increased apoptosis of the intestinal mucosa in young mice and whether pre-treatment of the animals with recombinant human insulin-like growth factor-I (IGF-I), a known anti-apoptotic factor, could protect the intestinal cells from H/R-induced apoptosis or intestinal injury.
Study Design: Young mice were divided into three groups: group 1 mice (H/R) were hypoxia-reoxygenation; group 2 mice (H/R + IGF-I) were treated with recombinant human IGF-I by intraperitoneal injection (1 mug/g b.
J Pharmacol Sci
March 2004
Department of Cell and Biological Pharmacology, Graduate School of Medical Sciences, Kumamoto University, Japan.
We investigated effects of sasanquasaponin (SQS), a traditional Chinese herb's effective component, on ischemia and reperfusion injury in mouse hearts and the possible role of intracellular Cl- homeostasis on SQS's protective effects during ischemia and reperfusion. An in vivo experimental ischemia model was made in mice (weight 27-45 g) using ligation of left anterior descending coronary artery, and in vitro models were made in perfused hearts by stopping flow or in isolated ventricular myocytes by hypoxia. The in vivo results showed that SQS inhibited cardiac arrhythmias during ischemia and reperfusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!