In view of the folklore use of green leaves to treat inflammation, the anti-inflammatory property of chlorophylls and their degradation products were studied. Chlorophyll a and pheophytin a (magnesium-free chlorophyll a) from fresh leaves showed potent anti-inflammatory activity against carrageenan-induced paw edema in mice and formalin-induced paw edema in rats. Chlorophyll a inhibited bacterial lipopolysaccharide-induced TNF-α (a pro-inflammatory cytokine) gene expression in HEK293 cells, but it did not influence the expression of inducible nitric acid synthase and cyclooxygenase-2 genes. Chlorophyll b only marginally inhibited both inflammation and TNF-α gene expression. But both chlorophyll a and chlorophyll b showed the same level of marginal inhibition on 12-O-tetradecanoyl-phorbol-13-acetate-induced NF-κB activation. Chlorophylls and pheophytins showed in vitro anti-oxidant activity. The study shows that chlorophyll a and its degradation products are valuable and abundantly available anti-inflammatory agents and promising for the development of phytomedicine or conventional medicine to treat inflammation and related diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10753-011-9399-0DOI Listing

Publication Analysis

Top Keywords

chlorophyll
9
tnf-α gene
8
treat inflammation
8
degradation products
8
paw edema
8
gene expression
8
chlorophyll revisited
4
anti-inflammatory
4
revisited anti-inflammatory
4
anti-inflammatory activities
4

Similar Publications

Given the rising frequency of thermal extremes (heatwaves and cold snaps) due to climate change, comprehending how a plant's origin affects its thermal tolerance breadth (TTB) becomes vital. We studied juvenile plants from three biomes: temperate coastal rainforest, desert and alpine. In controlled settings, plants underwent hot days and cold nights in a factorial design to examine thermal tolerance acclimation.

View Article and Find Full Text PDF

This study aimed to compare the conventional soybean ( L.) cultivation method with integrated systems in an Latossolo Vermelho Acriférrico típico and how these systems affect soil cover biomass production, initial nutrient concentration in plant residues, soil respiration and microclimate, as well as soybean growth, physiology and productivity. A comparative analysis of microclimate and soil respiration, plant physiology, and growth was conducted between a conventional soybean monoculture (soybean grown without plant residues on the soil from the previous crop) and soybean grown in soil containing maize residues.

View Article and Find Full Text PDF

Preparation and evaluation of MSR-1 bioinoculant on the growth and productivity of (L.) R. Wilczek.

3 Biotech

February 2025

Marine Biotechnology and Bioproducts Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 Tamil Nadu India.

Unlabelled: Recently, there has been a growing interest in the application of beneficial microorganisms to enhance crop performance.  (MSR-1) are spiral-shaped, gram-negative bacteria that exhibit magnetotaxis with the help of magnetosomes (iron oxide or iron sulphide). They have exhibited biomedical and environmental applications; however, the agricultural utilization of these strains is yet to be explored.

View Article and Find Full Text PDF

26S Proteasome Subunit SlPBB2 Regulates Fruit Development and Ripening in Tomato.

J Agric Food Chem

January 2025

Fruit Biology Laboratory, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.

Proteasomes are protein complexes responsible for degrading unneeded or damaged proteins through proteolysis and play critical roles in regulating plant development and response to environmental stresses. However, it is still unclear whether proteasomes regulate fruit development and ripening. In this study, we investigated the function of a core proteasome subunit, SlPBB2, in tomato fruit.

View Article and Find Full Text PDF

Photodynamic and photothermal bacteria targeting nanosystems for synergistically combating bacteria and biofilms.

J Nanobiotechnology

January 2025

Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.

The escalating hazards posed by bacterial infections underscore the imperative for pioneering advancements in next-generation antibacterial modalities and treatments. Present therapeutic methodologies are frequently impeded by the constraints of insufficient biofilm infiltration and the absence of precision in pathogen-specific targeting. In this current study, we have used chlorin e6 (Ce6), zeolitic imidazolate framework-8 (ZIF-8), polydopamine (PDA), and UBI peptide to formulate an innovative nanosystem meticulously engineered to confront bacterial infections and effectually dismantle biofilm architectures through the concerted mechanism of photodynamic therapy (PDT)/photothermal therapy (PTT) therapies, including in-depth research, especially for oral bacteria and oral biofilm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!