MK886 inhibits the proliferation of HL-60 leukemia cells by suppressing the expression of mPGES-1 and reducing prostaglandin E2 synthesis.

Int J Hematol

Department of Hematology, Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, The SUN Yat-sen Memorial Hospital of SUN Yat-sen University, 107 Yanjiangxi Rd, Guangzhou, People's Republic of China.

Published: November 2011

Microsomal prostaglandin E synthase-1 (mPGES-1), an inducible enzyme that specifically catalyzes the conversion of prostaglandin H2 (PGH2) to prostaglandin E2 (PGE2), has been reported to be over-expressed in a variety of solid tumor cells and tissues, but not in normal tissues. Its association with leukemia, however, has not been fully investigated. Our study revealed, for the first time, that mPGES-1 is over-expressed in human acute myeloid leukemia HL-60 cells. Cytotoxicity assays and flow cytometry showed that MK886, an inhibitor of mPGES-1, inhibits proliferation of HL-60 cells and induces apoptosis in a dose- and time-dependent manner, which may result from down-regulation of mPGES-1 expression and PGE2 synthesis. Evaluation of mediators of apoptotic signaling revealed up-regulation of BAX expression and caspase-3 activity, as well as significant decreases in Bcl2 and P-Akt. We conclude that MK886 reduces the viability of leukemia HL-60 cells by reducing mPGES-1 expression and PGE2 synthesis in a dose-dependent manner, which strongly suggests that mPGES-1 inhibitors should be considered as promising candidates for leukemia treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12185-011-0954-0DOI Listing

Publication Analysis

Top Keywords

hl-60 cells
12
inhibits proliferation
8
proliferation hl-60
8
leukemia hl-60
8
mpges-1 expression
8
expression pge2
8
pge2 synthesis
8
mpges-1
7
leukemia
5
cells
5

Similar Publications

Neutrophil elastase () mutations are the most common cause of cyclic (CyN) and congenital neutropenia (SCN), two autosomal dominant disorders causing recurrent infections due to impaired neutrophil production. Granulocyte colony-stimulating factor (G-CSF) corrects neutropenia but has adverse effects, including bone pain and in some cases, an increased risk of myelodysplasia (MDS) and acute myeloid leukemia (AML). Hematopoietic stem cell transplantation is an alternative but is limited by its complications and donor availability.

View Article and Find Full Text PDF

Objective: The prognosis for severe asthma is poor, and the current treatment options are limited. The methyl-CpG binding domain protein 2 (MBD2) participates in neutrophil-mediated severe asthma through epigenetic regulation. Neutrophil extracellular traps (NETs) play a critical role in the pathogenesis of severe asthma.

View Article and Find Full Text PDF

Target cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors; 5-([2,5-Dihydroxybenzyl]amino)salicylamides (Compounds 1-11) were examined for potential anticancer activity, with a trial to assess the underlying possible mechanisms. Compounds were assessed at a single dose against 60 cancer cell lines panel and those with the highest activity were tested in the five-dose assay. COMPARE analysis was conducted to explore potential mechanisms underlying their biological activity.

View Article and Find Full Text PDF

The synthesis of ()-1-(1,3-diphenylallyl)-1-1,2,4-triazoles and related compounds as anti-mitotic agents with activity in breast cancer was investigated. These compounds were designed as hybrids of the microtubule-targeting chalcones, indanones, and the aromatase inhibitor letrozole. : A panel of 29 compounds was synthesized and examined by a preliminary screening in estrogen receptor (ER) and progesterone receptor (PR)-positive MCF-7 breast cancer cells together with cell cycle analysis and tubulin polymerization inhibition.

View Article and Find Full Text PDF

Background: Uncoupling protein 2 (UCP2) is essential for maintaining redox homeostasis and regulating energy metabolism. Abnormal expression of UCP2 has been associated with various tumors, including leukemia. Genipin (GEN), a specific inhibitor of UCP2, has a long history of use in traditional Chinese medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!