Preclinical and clinical studies indicate that deficiency in folic acid plays a role in the pathophysiology of depression. Considering that alterations in the signaling pathways that regulate neuroplasticity and cellular survival are implicated in depressive disorders, the present study investigated the involvement of the phosphoinositide 3-kinase (PI3K), glycogen synthase kinase-3 (GSK-3β), and peroxisome proliferator-activated receptor-γ (PPARγ) in the antidepressant-like effect of folic acid in the forced swimming test (FST). The intracerebroventricular (i.c.v.) pre-treatment of mice with LY294002 (10 nmol/site, a PI3K inhibitor) or GW-9662 (1 µg/site, a PPARγ antagonist) prevented the antidepressant-like effect of folic acid (50 mg/kg, p.o.) in the FST. In addition, the administration of subeffective doses of the selective GSK-3β inhibitor, AR-A014418 (3 mg/kg, i.p.), a non-selective GSK-3β inhibitor, lithium chloride (10 mg/kg, p.o) or a PPARγ agonist, rosiglitazone (1 µg/site, i.c.v.) in combination with a subeffective dose of folic acid (10 mg/kg, p.o.) significantly reduced the immobility time in the FST as compared with either drug alone, without altering the locomotor activity. These results indicate that the antidepressant-like effect of folic acid in the FST might be dependent on inhibition of GSK-3β and activation of PPARγ, reinforcing the notion that these are important targets for antidepressant activity.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0269881111424456DOI Listing

Publication Analysis

Top Keywords

folic acid
24
antidepressant-like folic
16
pparγ antidepressant-like
8
acid forced
8
forced swimming
8
swimming test
8
acid mg/kg
8
gsk-3β inhibitor
8
folic
6
acid
6

Similar Publications

This study aimed to examine how mesoporous silica nanoparticles-chitosan-folic acid impacted the release of recombinant Azurin within the tumor environment. The goal was to trigger apoptosis and stimulate immune responses against both transformed and normal cells in BALB/c mice. The study found that the use of rAzu-MSNs-CS-FA, a specific formulation containing mesoporous silica nanoparticles-chitosan-folic acid, resulted in pH-responsive behavior and slower release of rAzurin compared to other groups.

View Article and Find Full Text PDF

The folate receptor (FR) is a well-known biomarker that is overexpressed in many cancer cells, making it a valuable target for cancer diagnostics and therapeutic strategies. However, identifying cancer biomarkers remains a challenge due to factors such as lengthy procedures, high costs, and low sensitivity. This study presents the development of a novel, cost-effective biosensor designed for the detection of FR.

View Article and Find Full Text PDF

The rapid progress in nanotechnology has introduced multifunctional iron oxide nanoparticles as promising agents in cancer treatment. This research focused on the synthesis and assessment of citric-acid-coated, folic-acid-conjugated nanoparticles loaded with doxorubicin, evaluating their therapeutic potential in tumor models. An advanced automated continuous technology line (CTL) utilizing a controlled co-precipitation method was employed to produce highly dispersive, multifunctional nanofluids with a narrow size distribution.

View Article and Find Full Text PDF

Background: Recent guidance from UK health authorities strongly cautions against the use of valproic acid (VPA) in persons under 55 because of reevaluated risk of teratogenicity.

Objective: To summarize the extant literature documenting VPA-associated anatomical, behavioral, and cognitive teratogenicity.

Method: Pubmed, Medline, Cochrane Library, PsychInfo, Embase, Scopus, Web of Science, and Google Scholar were searched in accordance with PRISMA guidelines.

View Article and Find Full Text PDF

Introduction: Maternal undernutrition and inflammation in utero may significantly impact the neurodevelopmental potential of offspring. However, few studies have investigated the effects of pregnancy interventions on long-term child growth and development. This study will examine the effects of prenatal nutrition and infection management interventions on long-term growth and neurodevelopmental outcomes of offspring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!