Development of a mass-producible on-chip plasmonic nanohole array biosensor.

Nanoscale

Institute of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Japan.

Published: December 2011

We have developed a polymer film based plasmonic device whose optical properties are tuned for measuring biological samples. The device has a circular nanohole array structure fabricated with a nanoimprint technique using a UV curable polymer, and then gold thin film is deposited by electron beam deposition. Therefore, the device is mass-producible, which is also very important for bioaffinity sensors. First the gold film thickness and hole depth were optimized to obtain the maximum dip shift for the reflection spectra. The dip shift is equivalent to the sensitivity to refractive index changes at the plasmonic device surface. We also calculated the variation in reflection spectra by changing the above conditions using the finite-difference time domain method, and we obtained agreement between the theoretical and experimental curves. The nanohole periodicity was adjusted from 400 to 900 nm to make it possible to perform measurements in the visible wavelength region to measure the aqueous samples with less optical absorption. The tuned bottom filled gold nanohole array was incorporated in a microfluidic device covered with a PDMS based microchannel that was 2 mm wide and 20 μm deep. As a proof of concept, the device was used to detect TNF-α by employing a direct immunochemical reaction on the plasmonic array, and a detection limit of 21 ng mL(-1) was obtained by amplification with colloidal gold labeling instead of enzymatic amplification.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1nr10883bDOI Listing

Publication Analysis

Top Keywords

nanohole array
12
plasmonic device
8
dip shift
8
reflection spectra
8
device
6
development mass-producible
4
mass-producible on-chip
4
plasmonic
4
on-chip plasmonic
4
nanohole
4

Similar Publications

Plasmon-Enhanced Fluorescence of Single Extracellular Vesicles Captured in Arrayed Aluminum Nanoholes.

ACS Omega

December 2024

Division of Solid-State Electronics, Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, SE-751 03 Uppsala, Sweden.

Extracellular vesicles (EVs) are nanoparticles encapsulated with a lipid bilayer, and they constitute an excellent source of biomarkers for multiple diseases. However, the heterogeneity in their molecular compositions constitutes a major challenge for their recognition and profiling, thereby limiting their application as an effective biomarker. A single-EV analysis technique is crucial to both the discovery and the detection of EV subpopulations that carry disease-specific signatures.

View Article and Find Full Text PDF

Hybrid nanoplasmonic structures composed of subwavelength apertures in metallic films and nanoparticles have recently been demonstrated as ultrasensitive plasmonic sensors. This work investigates the electrokinetically driven propagation of the assembly mechanism of the metallic nanoparticles through nanoapertures. The Debye-Hückel approximation for a symmetric electrolyte solution with overlapping electrical double layers (EDLs) is used to obtain an analytical solution to the problem.

View Article and Find Full Text PDF

Tips versus Holes: ×10 Higher Scattering in FIB-made Plasmonic Nanoscale Arrays for Spectral Imaging.

ACS Omega

November 2024

Advanced Laboratory of Electro-Optics (ALEO), Department of Applied Physics/Electro-Optics Engineering, Lev Academic Center, Jerusalem 9116001, Israel.

Plasmonic nanostructure arrays, designed for performance as pixels in an advanced SERS imaging device, were fabricated by gallium focused ion beam (FIB). Though the FIB is best suited for etching holes and negative structures, our previously reported simulations favor protrusions. Herein, we report on the FIB methodology to "sculpt" positive structures by "ion-blasting" away the surrounding material.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the use of nano-hole array photonic crystal structures in Ge-on-Si single photon avalanche diodes (SPADs) to enhance their performance, specifically focusing on single photon detection efficiencies (SPDE).
  • It highlights the need for research into the effects of these structures on SPDE and dark count rates, establishing a platform for optimization and analysis of photonic crystals within SPAD devices.
  • Simulations indicate that optimized photonic crystal designs could significantly boost photon absorption to 37.09% at 1550 nm, potentially resulting in over 2.4 times higher SPDE and improved noise-equivalent power if surfaces are well-passivated.
View Article and Find Full Text PDF

In this work, we present the monolithic integration of a TiN nanohole array and a Ge photodetector towards a CMOS compatible fabrication of a refractive index sensor in a 200 mm wafer silicon technology. We developed a technology process that enables fabrication with high yields of around 90%. Ge photodetectors with a Ge layer thickness of 450 nm and an area of 1600 µm (40 µm x 40 µm) show dark current densities of around 129 mA/cm and responsivities of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!