Background: Mutations in Exostosin-1 (EXT1) or Exostosin-2 (EXT2) cause the autosomal dominant disorder multiple osteochondromas (MO). This disease is mainly characterized by the appearance of multiple cartilage-capped protuberances arising from children's metaphyses and is known to display clinical inter- and intrafamilial variations. EXT1 and EXT2 are both tumor suppressor genes encoding proteins that function as glycosyltransferases, catalyzing the biosynthesis of heparan sulfate. At present, however, very little is known about the regulation of these genes. Two of the most intriguing questions concerning the pathogenesis of MO are how disruption of a ubiquitously expressed gene causes this cartilage-specific disease and how the clinical intrafamilial variation can be explained. Since mutations in the EXT1 gene are responsible for ~65% of the MO families with known causal mutation, our aim was to isolate and characterize the EXT1 promoter region to elucidate the transcriptional regulation of this tumor suppressor gene.
Methods: In the present study, luciferase reporter gene assays were used to experimentally confirm the in silico predicted EXT1 core promoter region. Subsequently, we evaluated the effect of single nucleotide polymorphisms (SNP's) on EXT1 promoter activity and transcription factor binding using luciferase assays, electrophoretic mobility shift assays (EMSA), and enzyme-linked immunosorbent assays (ELISA). Finally, a genotype-phenotype study was performed with the aim to identify one or more genetic modifiers influencing the clinical expression of MO.
Results: Transient transfection of HEK293 cells with a series of luciferase reporter constructs mapped the EXT1 core promoter at approximately -917 bp upstream of the EXT1 start codon, within a 123 bp region. This region is conserved in mammals and located within a CpG-island containing a CAAT- and a GT-box. A polymorphic G/C-SNP at -1158 bp (rs34016643) was demonstrated to be located in a USF1 transcription factor binding site, which is lost with the presence of the C-allele resulting in a ~56% increase in EXT1 promoter activity. A genotype-phenotype study was suggestive for association of the C-allele with shorter stature, but also with a smaller number of osteochondromas.
Conclusions: We provide for the first time insight into the molecular regulation of EXT1. Although a larger patient population will be necessary for statistical significance, our data suggest the polymorphism rs34016643, in close proximity of the EXT1 promoter, to be a potential regulatory SNP, which could be a primary modifier that might explain part of the clinical variation observed in MO patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2011.10.034 | DOI Listing |
Cell Rep
January 2025
Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650201, China. Electronic address:
Men, despite having a lower likelihood of longevity compared to women, generally exhibit better health status when they achieve longevity. The role of DNA methylation in this paradox remains unclear. We performed whole-genome bisulfite sequencing on long-lived men (LLMs), long-lived women (LLWs), younger men (YMs) and younger women (YWs) to explore specific methylation characteristics in LLMs.
View Article and Find Full Text PDFFront Plant Sci
September 2023
Department of Research Center on Tobacco Cultivating and Curing, Tobacco Research Institute of Hubei, Wuhan, China.
The lack of irrigation water in agricultural soils poses a significant constraint on global crop production. In-depth investigation into microRNAs (miRNAs) has been widely used to achieve a comprehensive understanding of plant defense mechanisms. However, there is limited knowledge on the association of miRNAs with drought tolerance in cigar tobacco.
View Article and Find Full Text PDFOrphanet J Rare Dis
February 2021
Department of Genetics, MBC 3, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh, 11211, Saudi Arabia.
Background: Hereditary Multiple Exostoses (HME), also known as Multiple Osteochondromas (MO) is a rare genetic disorder characterized by multiple benign cartilaginous bone tumors, which are caused by mutations in the genes for exostosin glycosyltransferase 1 (EXT1) and exostosin glycosyltransferase 2 (EXT2). The genetic defects have not been studied in the Saudi patients.
Aim Of Study: We investigated mutation spectrum of EXT1 and EXT2 in 22 patients from 17 unrelated families.
To develop new methods to distinguish indolent from aggressive prostate cancers (PCa), we utilized comprehensive high-throughput array-based relative methylation (CHARM) assay to identify differentially methylated regions (DMRs) throughout the genome, including both CpG island (CGI) and non-CGI regions in PCa patients based on Gleason grade. Initially, 26 samples, including 8 each of low [Gleason score (GS) 6] and high (GS ≥7) grade PCa samples and 10 matched normal prostate tissues, were analyzed as a discovery cohort. We identified 3,567 DMRs between normal and cancer tissues, and 913 DMRs distinguishing low from high-grade cancers.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
May 2015
Department of Ophthalmology University of Cincinnati, Cincinnati, Ohio, United States.
Purpose: Heparan sulfate (HS) is a highly modified glycosaminoglycan (GAG) bound to a core protein to form heparan sulfate proteoglycans (HSPGs) that are vital in many cellular processes ranging from development to adult physiology, as well as in disease, through interactions with various protein ligands. This study aimed to elucidate the role of HS in corneal epithelial homeostasis and wound healing.
Methods: An inducible quadruple transgenic mouse model was generated to excise Ext1 and Ndst1, which encode the critical HS chain elongation enzyme and N-deacetylase/N-sulfotransferase, respectively, in keratin 14-positive cells upon doxycycline induction.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!