Polyglutamine (polyQ) stretches exceeding a threshold length confer a toxic function to proteins that contain them and cause at least nine neurological disorders. The basis for this toxicity threshold is unclear. Although polyQ expansions render proteins prone to aggregate into inclusion bodies, this may be a neuronal coping response to more toxic forms of polyQ. The exact structure of these more toxic forms is unknown. Here we show that the monoclonal antibody 3B5H10 recognizes a species of polyQ protein in situ that strongly predicts neuronal death. The epitope selectively appears among some of the many low-molecular-weight conformational states assumed by expanded polyQ and disappears in higher-molecular-weight aggregated forms, such as inclusion bodies. These results suggest that protein monomers and possibly small oligomers containing expanded polyQ stretches can adopt a conformation that is recognized by 3B5H10 and is toxic or closely related to a toxic species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271120PMC
http://dx.doi.org/10.1038/nchembio.694DOI Listing

Publication Analysis

Top Keywords

polyq stretches
8
inclusion bodies
8
toxic forms
8
expanded polyq
8
polyq
6
toxic
5
identifying polyglutamine
4
polyglutamine protein
4
protein species
4
species situ
4

Similar Publications

A nucleolar mechanism suppresses organismal proteostasis by modulating TGFβ/ERK signalling.

Nat Cell Biol

January 2025

Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.

The protein homeostasis (proteostasis) network encompasses a myriad of mechanisms that maintain the integrity of the proteome by controlling various biological functions, including protein folding and degradation. Alas, ageing-associated decline in the efficiency of this network enables protein aggregation and consequently the development of late-onset neurodegenerative disorders, such as Alzheimer's disease. Accordingly, the maintenance of proteostasis through late stages of life bears the promise to delay the emergence of these devastating diseases.

View Article and Find Full Text PDF
Article Synopsis
  • The ataxin-3 protein features a unique structure with a functional N-terminal Josephin domain and a C-terminal region with ubiquitin interaction motifs, contributing to its role in neurodegenerative diseases like Machado-Joseph disease.
  • Researchers utilized sequence self-homology dot plot analysis and protein comparisons to study the evolution of ataxin-3 across Filozoa, revealing additional ubiquitin-binding motifs and confirming its conserved architecture.
  • Findings included insights into the evolution of ataxin-3, including the discovery of neofunctionalization events that link modifications in its structure to disease mechanisms, emphasizing the potential for new understandings of its molecular interactions.
View Article and Find Full Text PDF

Nanopore Identification of Polyglutamine Length via Cross-Slit Sensing.

J Phys Chem Lett

November 2024

Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China.

Nanopore sensing is now reshaping analytical proteomics with its simplicity, convenience, and high sensitivity. Determining the length of polyglutamine (polyQ) is crucial for the rapid screening of Huntington's disease. In this computational study, we present a cross-nanoslit detection approach to determine the polyQ length, where the nanoslit is carved within a two-dimensional (2D) in-plane heterostructure of graphene (GRA) and hexagonal boron nitride (hBN).

View Article and Find Full Text PDF

Neurexin1 level in Huntington's Disease and decreased Neurexin1 in disease progression.

Neurosci Res

October 2024

Department of Neurology, College of Medicine, Yonsei University, Seoul, South Korea. Electronic address:

Huntington's disease (HD) is a neurodegenerative disorder characterized by the presence of abnormally expanded polyglutamine tracts in huntingtin protein (HTT). Mutant HTT disrupts synaptic transmission and plasticity, particularly in the striatum and cortex, leading to early dysfunctions, such as altered neurotransmitter release, impaired synaptic vesicle recycling, and disrupted postsynaptic receptor function. Synaptic loss precedes neuronal degeneration and contributes to disease progression.

View Article and Find Full Text PDF

While the activities of certain proteases promote proteostasis and prevent neurodegeneration-associated phenotypes, the protease cathepsin B (CTSB) enhances proteotoxicity in Alzheimer's disease (AD) model mice, and its levels are elevated in brains of AD patients. How CTSB exacerbates the toxicity of the AD-causing Amyloid β (Aβ) peptide is controversial. Using an activity-based probe, aging-altering interventions and the nematode C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!