The genomes of two Bacillus cereus strains (ATCC 10987 and ATCC 14579) have been sequenced. Here, we report the specificities of type II/III restriction (R) and modification (M) enzymes. Found in the ATCC 10987 strain, BceSI is a restriction endonuclease (REase) with the recognition and cut site CGAAG 24-25/27-28. BceSII is an isoschizomer of AvaII (G/GWCC). BceSIII cleaves at ACGGC 12/14. The BceSIII C terminus resembles the catalytic domains of AlwI, MlyI, and Nt.BstNBI. BceSIV is composed of two subunits and cleaves on both sides of GCWGC. BceSIV activity is strongly stimulated by the addition of cofactor ATP or GTP. The large subunit (R1) of BceSIV contains conserved motifs of NTPases and DNA helicases. The R1 subunit has no endonuclease activity by itself; it strongly stimulates REase activity when in complex with the R2 subunit. BceSIV was demonstrated to hydrolyze GTP and ATP in vitro. BceSIV is similar to CglI (GCSGC), and homologs of R1 are found in 11 sequenced bacterial genomes, where they are paired with specificity subunits. In addition, homologs of the BceSIV R1-R2 fusion are found in many sequenced microbial genomes. An orphan methylase, M.BceSV, was found to modify GCNGC, GGCC, CCGG, GGNNCC, and GCGC sites. A ParB-methylase fusion protein appears to nick DNA nonspecifically. The ATCC 14579 genome encodes an active enzyme Bce14579I (GCWGC). BceSIV and Bce14579I belong to the phospholipase D (PLD) family of endonucleases that are widely distributed among Bacteria and Archaea. A survey of type II and III restriction-modification (R-M) system genes is presented from sequenced B. cereus, Bacillus anthracis, and Bacillus thuringiensis strains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256598 | PMC |
http://dx.doi.org/10.1128/JB.06248-11 | DOI Listing |
Int J Food Microbiol
January 2025
Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea. Electronic address:
This study investigated the heat resistance of Bacillus cereus spores (as well as spores in intact biofilm) in two types of Korean fermented soybean foods and presumed the potential key parameters (physicochemical and nutritional properties) associated with their heat resistance. For example, the D-values of B. cereus ATCC 10987 and CH3 spores with strong heat resistance and prolific biofilm-forming capability were compared in various Jjigae-type (Cheonggukjang jjigae, Doenjang jjigae, and Gochujang jjigae) and Jang-type (Cheonggukjang, Doenjang, and Gochujang) foods commonly consumed in Korea.
View Article and Find Full Text PDFMicrobiol Spectr
June 2023
Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.
Biosynthesis of the Pel exopolysaccharide in Pseudomonas aeruginosa requires all seven genes of the operon. The periplasmic modification enzyme PelA contains a C-terminal deacetylase domain that is necessary for Pel-dependent biofilm formation. Herein, we show that extracellular Pel is not produced by a P.
View Article and Find Full Text PDFBiocontrol Sci
October 2022
Faculty of Pharmaceutical Sciences, Setsunan University.
Bacillus cereus is an important foodborne pathogenic bacterium. Although several B. cereus strains have been isolated from the environment, the differences among these strains with respect to spore formation ability and cell morphology need clarification.
View Article and Find Full Text PDFInt J Food Microbiol
February 2022
Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea. Electronic address:
Bacillus cereus, a foodborne pathogen, is capable of forming spores and biofilms as methods to withstand environmental stresses. These bacterial structures are an issue for food safety as they aid the bacteria survive heat sterilisation processes of foods and food contact surfaces. This study was conducted to investigate the role of the biofilm structure in providing an extra layer of protection to spores against heat treatments.
View Article and Find Full Text PDFPLoS One
November 2021
Department of Food Biotechnology, Korea University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea.
Bacillus cereus is a foodborne pathogen and can form biofilms on food contact surfaces, which causes food hygiene problems. While it is necessary to understand strain-dependent variation to effectively control these biofilms, strain-to-strain variation in the structure of B. cereus biofilms is poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!