The mitotic checkpoint is a specialized signal transduction pathway that monitors kinetochore-microtubule attachment to achieve faithful chromosome segregation. MAD2 is an evolutionarily conserved mitotic checkpoint protein that exists in open (O) and closed (C) conformations. The increase of intracellular C-MAD2 level during mitosis, through O→C-MAD2 conversion as catalyzed by unattached kinetochores, is a critical signaling event for the mitotic checkpoint. However, it remains controversial whether MAD2 is an integral component of the effector of the mitotic checkpoint--the Mitotic Checkpoint Complex (MCC). We show here that endogenous human MCC is assembled by first forming a BUBR1:BUB3:CDC20 complex in G2 and then selectively incorporating C-MAD2 during mitosis. Nevertheless, MCC can be induced to form in G1/S cells by expressing a C-conformation locked MAD2 mutant, indicating intracellular level of C-MAD2 as a major limiting factor for MCC assembly. In addition, a recombinant MCC containing C-MAD2 exhibits effective inhibitory activity towards APC/C isolated from mitotic HeLa cells, while a recombinant BUBR1:BUB3:CDC20 ternary complex is ineffective at comparable concentrations despite association with APC/C. These results help establish a direct connection between a major signal transducer (C-MAD2) and the potent effector (MCC) of the mitotic checkpoint, and provide novel insights into protein-protein interactions during assembly of a functional MCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266009 | PMC |
http://dx.doi.org/10.4161/cc.10.21.17919 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!