Harmonic motion imaging for focused ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on amplitude-modulated (AM) - harmonic motion imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module and an image-formation model. The objective of this study is to develop such a framework to (1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and (2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25 Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6 and 9, the FE and estimated HMI displacement ratios were equal to 1.83, 3.69 and 5.39 and 1.65, 3.19 and 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28 and 1.78 at 10-s, 20-s and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was found in both simulations (16.2, 73.1 and 334.7 mm(2)) and experiments (26.2, 94.2 and 206.2 mm(2)). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005895PMC
http://dx.doi.org/10.1016/j.ultrasmedbio.2011.09.005DOI Listing

Publication Analysis

Top Keywords

hifu lesion
12
lesion detection
12
harmonic motion
12
motion imaging
12
focused ultrasound
12
hifu
8
imaging focused
8
ultrasound hmifu
8
theoretical framework
8
fundamental performance
8

Similar Publications

The growing interest in minimal and non-invasive therapies, especially in the field of cancer treatment, highlights a significant shift toward safer and more effective options. Ablative therapies are well-established tools in cancer treatment, with known effects including locoregional control, while their role as modulators of the systemic immune response against cancer is emerging. The HIFU developed with magnetic resonance imaging (MRI) guidance enables treatment precision, improves real-time procedural control, and ensures accurate outcome assessment.

View Article and Find Full Text PDF

Background: Treatment of deep carious lesions poses significant challenges in dentistry, as complete lesion removal risks compromising pulp vitality, while selective removal often reduces the longevity of restorations. Herein, we propose a minimally invasive approach using High-Intensity Focused Ultrasound (HIFU) for microscale removal of carious dentine. Concurrently, HIFU's antimicrobial effects against associated cariogenic biofilms and the corresponding thermal and biological impacts on surrounding tissues were investigated.

View Article and Find Full Text PDF

Background: Drug-resistant epilepsy (DRE) secondary to hypothalamic hamartoma (HH) often requires surgical resection or stereotactic radiosurgery, which frequently fail to provide satisfactory outcomes and are associated with severe side effects. Magnetic resonance-guided focused ultrasound (MRgFUS) may represent a minimally invasive surgical approach to HH by offering precise thermal ablation of sub-millimetric brain targets while sparing surrounding structures.

Methods: We present the case of a 19-year-old man with HH-associated DRE, who was successfully treated with MRgFUS.

View Article and Find Full Text PDF

​Mucinous ovarian cancer (MOC) is characterized by high malignancy, poor prognosis and a high recurrence rate. Surgical adjuvant chemotherapy is the main treatment for MOC. The recurrence rate of advanced mucinous ovarian cancer following surgery is significantly high, with limited efficacious treatment options available.

View Article and Find Full Text PDF

This network meta-analysis aims to identify the best possible combination therapy for individuals suffering from adenomyosis. To identify pertinent research for the network meta-analysis, a comprehensive search was conducted across multiple databases, including PubMed, Embase, Cochrane Library, Web of Science, CNKI, WanFang, and VIP, spanning from their commencement to February 21, 2024. The study's focus was on evaluating outcomes including visual analog scale (VAS) scores for dysmenorrhea, measurements of uterine and lesion volumes, menstrual blood loss, and the rate of disease recurrence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!