Results of the purification of alcohol dehydrogenase (ADH) by field step electrophoresis and combined field step-zone electrophoresis are presented. In field step electrophoresis, optimization of voltage, residence time and pH of the sample solution led to a maximal purification factor of 2.8 and a yield of 89% ADH. The limit of loading capacity was reached at a protein concentration of the sample solution of approximately 4 g/L, allowing a maximal throughput of 1.14 g/h with a yield of 86% and a 2.8-fold purification in the Elphor VaP 22 apparatus. With a production scale apparatus a throughput of 2.07 g/h without any loss of separation quality could be achieved. By introducing the sample solution into the separation chamber through 3 inlets, simultaneously, the throughput was increased to 3.2 g/h with a purification factor of 2.7 and a yield of 82% ADH. For the combined field step-zone electrophoresis method a maximum purification factor of 3.6 and a yield of 80% ADH were achieved. The loading capacity was limited to a 4.13 g/L protein concentration of the sample solution, resulting in a throughput of 440 mg/h. Injecting the sample solution simultaneously into 3 inlets resulted in a maximum throughput of 1.92 g/h with 3.1-fold purification and a yield of 80% ADH. Zone electrophoresis, field step electrophoresis and a combination of both are compared with respect to resolution, throughput and the application potential in a protein purification scheme. A scale-up to 3 g/h is possible in zone electrophoresis and field step electrophoresis.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.1150110604 | DOI Listing |
RSC Adv
January 2025
College of Chemistry and Chemical Engineering, Lingnan Normal University Zhanjiang 524048 China
Manganese dioxide (MnO), lauded for its biocompatibility and distinctive optical and physical characteristics, has become an indispensable material in the biomedical field, showing immense potential in disease detection, treatment, and prevention. Particularly, the ability of MnO nanoparticles to oxidize glutathione (GSH) to its oxidized form has positioned them as pivotal players in GSH sensing. However, conventional preparation methods, whether top-down or bottom-up, often result in nanoparticles that require multi-step processing and modification to achieve good dispersion in physiological conditions, which is both time-consuming and complex.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
Born-Oppenheimer molecular dynamics (BOMD) simulations are of great interest for the dynamic properties of molecular and solid systems. However, BOMD simulations necessitate not only an extensive period of dynamical evolution but also costly self-consistent-field (SCF) electronic structure calculations, especially for hybrid functional-based BOMD (H-BOMD) simulations within plane-wave basis sets. Here, we propose an improved always stable predictor-corrector (ASPC) method for the wave function extrapolation to accelerate the plane-wave H-BOMD simulations, named projected ASPC (PASPC), yielding a wave function closer to the actual solution space and efficiently reducing the number of SCF iterations at each MD step.
View Article and Find Full Text PDFAntimicrob Resist Infect Control
January 2025
Unit 37: Healthcare-Associated Infections, Surveillance of Antibiotic Resistance and Consumption, Department of Infectious Disease Epidemiology, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.
Background: Antimicrobial resistance is a global threat to public health, with methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VREfm) being major contributors. Despite their clinical impact, comprehensive assessments of changes of the burden of bloodstream infections in terms of Disability-Adjusted Life Years (DALYs) and attributable deaths over time are lacking, particularly in Germany.
Methods: We used data from the Antimicrobial Resistance Surveillance system, which covered about 30% of German hospitals.
ACS Appl Mater Interfaces
January 2025
Departament de Física, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
Magneto-ionics, which refers to the modification of the magnetic properties of materials through electric-field-induced ion migration, is emerging as one of the most promising methods to develop nonvolatile energy-efficient memory and spintronic and magnetoelectric devices. Herein, the controlled generation of ferromagnetism from paramagnetic Co-Ni oxide patterned microdisks (prepared upon thermal oxidation of metallic microdisks with dissimilar Co-Ni ratios, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!