Craniofacial morphology of Homo floresiensis: description, taxonomic affinities, and evolutionary implication.

J Hum Evol

Department of Anthropology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba-shi, Ibaraki Prefecture Japan.

Published: December 2011

This paper describes in detail the external morphology of LB1/1, the nearly complete and only known cranium of Homo floresiensis. Comparisons were made with a large sample of early groups of the genus Homo to assess primitive, derived, and unique craniofacial traits of LB1 and discuss its evolution. Principal cranial shape differences between H. floresiensis and Homo sapiens are also explored metrically. The LB1 specimen exhibits a marked reductive trend in its facial skeleton, which is comparable to the H. sapiens condition and is probably associated with reduced masticatory stresses. However, LB1 is craniometrically different from H. sapiens showing an extremely small overall cranial size, and the combination of a primitive low and anteriorly narrow vault shape, a relatively prognathic face, a rounded oval foramen that is greatly separated anteriorly from the carotid canal/jugular foramen, and a unique, tall orbital shape. Whereas the neurocranium of LB1 is as small as that of some Homo habilis specimens, it exhibits laterally expanded parietals, a weak suprameatal crest, a moderately flexed occipital, a marked facial reduction, and many other derived features that characterize post-habilis Homo. Other craniofacial characteristics of LB1 include, for example, a relatively narrow frontal squama with flattened right and left sides, a marked frontal keel, posteriorly divergent temporal lines, a posteriorly flexed anteromedial corner of the mandibular fossa, a bulbous lateral end of the supraorbital torus, and a forward protruding maxillary body with a distinct infraorbital sulcus. LB1 is most similar to early Javanese Homo erectus from Sangiran and Trinil in these and other aspects. We conclude that the craniofacial morphology of LB1 is consistent with the hypothesis that H. floresiensis evolved from early Javanese H. erectus with dramatic island dwarfism. However, further field discoveries of early hominin skeletal remains from Flores and detailed analyses of the finds are needed to understand the evolutionary history of this endemic hominin species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhevol.2011.08.008DOI Listing

Publication Analysis

Top Keywords

craniofacial morphology
8
homo floresiensis
8
early javanese
8
homo
7
lb1
7
craniofacial
4
morphology homo
4
floresiensis
4
floresiensis description
4
description taxonomic
4

Similar Publications

Background: Transesutural distraction osteogenesis (TSDO) is a method of correcting midfacial hypoplasia (MH) secondary to cleft lip and palate (CLP) without osteotomy. However, there has been little research on how the morphology of the cranial base changes postoperatively or whether any correction of the cranial base occurs.

Materials And Methods: This retrospective study included 35 pediatric patients with MH secondary to CLP, who underwent TSDO treatment.

View Article and Find Full Text PDF

Background: Orthodontic-orthognathic treatment is the standard of care for moderate and/or severe skeletal class III (SCIII) malocclusion. Following orthognathic surgery, morphological changes in the temporomandibular joint structures (TMJ) may contribute to condylar resorption (CR).

Objectives: This systematic review aimed to identify the morphological signs of condylar resorption (changes in the condylar head, position, neck, disk, and joint space) following orthognathic surgery in patients with SCIII compared with those with skeletal class II (SCII) malocclusion.

View Article and Find Full Text PDF

Achondroplasia, the most prevalent short-stature disorder, is caused by missense variants overactivating the fibroblast growth factor receptor 3 (FGFR3). As current surgical and pharmaceutical treatments only partially improve some disease features, we sought to explore a genetic approach. We show that an enhancer located 29 kb upstream of mouse Fgfr3 (-29E) is sufficient to confer a transgenic mouse reporter with a domain of expression in cartilage matching that of Fgfr3.

View Article and Find Full Text PDF

The Association of Occipital Spur with Craniocervical Posture and Craniofacial Morphology.

J Pain Res

January 2025

Department of Orthodontics, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.

Purpose: This cross-sectional study aimed to evaluate the relationship between occipital spur (OS) with both craniocervical posture and craniofacial morphology.

Methods: The study involved 240 lateral cephalograms from subjects with and without OS. The craniocervical posture and facial morphology of every individual were assessed through Uceph software analysis of their cephalograms, considering 32 variables.

View Article and Find Full Text PDF

Background: Spinal cord injury (SCI) triggers a complex inflammatory response that impedes neural repair and functional recovery. The modulation of macrophage phenotypes is thus considered a promising therapeutic strategy to mitigate inflammation and promote regeneration.

Methods: We employed microarray and single-cell RNA sequencing (scRNA-seq) to investigate gene expression changes and immune cell dynamics in mice following crush injury at 3 and 7 days post-injury (dpi).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!