Bruxism is characterized by non-functional contact of mandibular and maxillary teeth resulting in clenching or grating of teeth. Theories on factors causing bruxism are a matter of controversy in current literature. The dental profession has predominantly viewed peripheral local morphological disorders, such as malocclusion, as the cause of clenching and gnashing. This etiological model is based on the theory that occlusal maladjustment results in reduced masticatory muscle tone. In the absence of occlusal equilibration, motor neuron activity of masticatory muscles is triggered by periodontal receptors. The second theory assumes that central disturbances in the area of the basal ganglia are the main cause of bruxism. An imbalance in the circuit processing of the basal ganglia is supposed to be responsible for muscle hyperactivity during nocturnal dyskinesia such as bruxism. Some authors assume that bruxism constitutes sleep-related parafunctional activity (parasomnia). A recent model, which may explain the potential imbalance of the basal ganglia, is neuroplasticity. Neural plasticity is based on the ability of synapses to change the way they work. Activation of neural plasticity can change the relationship between inhibitory and excitatory neurons. It seems obvious that bruxism is not a symptom specific to just one disease. Many forms (and causes) of bruxism may exist simultaneously, as, for example, peripheral or central forms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aanat.2011.09.002DOI Listing

Publication Analysis

Top Keywords

basal ganglia
12
bruxism
8
neural plasticity
8
main theories
4
theories dental
4
dental bruxism
4
bruxism bruxism
4
bruxism characterized
4
characterized non-functional
4
non-functional contact
4

Similar Publications

Decapod crustaceans regulate molting through steroid molting hormones, ecdysteroids, synthesized by the molting gland (Y-organ, YO). Molt-inhibiting hormone (MIH), a neuropeptide synthesized and secreted by the eyestalk ganglia, negatively regulates YO ecdysteroidogenesis. MIH signaling is mediated by cyclic nucleotide second messengers.

View Article and Find Full Text PDF

The substantia nigra pars compacta (SNc), one of the main dopaminergic nuclei of the brain, exerts a regulatory function on the basal ganglia circuitry via the nigro-striatal pathway but its possible dopaminergic innervation of the thalamus has been only investigated in non-human primates. The impossibility of tract-tracing studies in humans has boosted advanced MRI techniques and multi-shell high-angular resolution diffusion MRI (MS-HARDI) has promised to shed more light on the structural connectivity of subcortical structures. Here, we estimated the possible dopaminergic innervation of the human thalamus via an MS-HARDI tractography of the SNc in healthy human young adults.

View Article and Find Full Text PDF

Background: Spinocerebellar ataxia type 3 (SCA3) is a hereditary disease caused by abnormally expanded CAG repeats in the ATXN3 gene. The study aimed to identify potential biomarkers for assessing therapeutic efficacy by investigating the associations between expanded CAG repeat size, brain and spinal cord volume loss, and motor functions in patients with SCA3.

Methods: In this prospective, cross-observational study, we analyzed 3D T1-weighted MRIs from 92 patients with SCA3 and 42 healthy controls using voxel-based morphometry and region of interest approaches.

View Article and Find Full Text PDF

Rewards are essential for motivation, decision-making, memory, and mental health. We identified the subventricular tegmental nucleus (SVTg) as a brainstem reward center. In mice, reward and its prediction activate the SVTg, and SVTg stimulation leads to place preference, reduced anxiety, and accumbal dopamine release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!