Pathologies of the wrist, such as fractures or instabilities, can lead to alterations in joint biomechanics. Accurate treatment of these pathologies is a frequent challenge for the surgeon. For biomechanical investigations, a test-setup that applies physiological loading of the wrist joint is necessary. A force controlled test-bench with agonistic and antagonistic muscle forces was built to move six fresh frozen human upper extremities through flexion and extension of the wrist joint. Tendon forces, range of motion, intraarticular contact area and contact pressure of the lunate and scaphoid facet as well as tendon excursion were investigated and compared with the current literature. During wrist motion the extensors exerted double the force of the flexors. Capsulotomy and sensor insertion decreased the range of motion from 63.4° (SD 14.1) to 45.9° (SD 23.7). The ratio of force transmitted through the radius and ulna was 77:23 and pressure distribution between the scaphoid and lunate facet showed a 70:30 relationship. The obtained data indicate a good agreement with the available literature. Therefore, the force controlled test-bench in combination with intraarticular radiocarpal measurements can be used to investigate the influence of wrist pathologies on joint biomechanics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.medengphy.2011.10.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!