Amantadine is currently used as an antiviral and an antiparkinsonian drug. Although the drug is known to bind a viral proton channel protein, the mechanism of action in Parkinson's disease (PD) remains to be determined. This study investigated whether the drug has an inhibitory effect on microglial activation and neuroinflammation, which have been implicated in the progression of neurodegenerative processes. Using cultured microglial cells, it was demonstrated that the drug inhibited inflammatory activation of microglia and a signaling pathway that governs the microglial activation. The drug reduced the expression and production of proinflammatory mediators in bacterial lipopolysaccharide-stimulated microglia cells. The microglia-inhibiting activity of amantadine was also demonstrated in a microglia/neuron coculture and animal models of neuroinflammation and Parkinson's disease. Collectively, our results suggest that amantadine may act on microglia in the central nervous system to inhibit their inflammatory activation, thereby attenuating neuroinflammation. These results provide a molecular basis of the glia-targeted mechanism of action for amantadine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2011.08.011DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
12
microglia-inhibiting activity
8
mechanism action
8
microglial activation
8
inflammatory activation
8
drug
6
amantadine
5
activity parkinson's
4
disease drug
4
drug amantadine
4

Similar Publications

This study investigates the role of flavonoid Icaritin (ICT) in estrogen-deficient ovariectomized (OVX) female mice by activating the Estrogen receptor (ER)/ Phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, potentially delaying Parkinson's disease (PD) progression post-castration. Seventy-five 8-week-old C57BL/6J female mice underwent ovariectomy, followed by MPTP (20 mg/kg) injection for 7 days. ICT (20 mg/kg) was administered for 14 days, and motor function was assessed using various behavioral tests.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.

View Article and Find Full Text PDF

Background: α-Synuclein (α-Syn) pathology is present in 30-50 % of Alzheimer's disease (AD) patients, and its interactions with tau proteins may further exacerbate pathological changes in AD. However, the specific role of different aggregation forms of α-Syn in the progression of AD remains unclear.

Objectives: To explore the relationship between various aggregation types of CSF α-Syn and Alzheimer's disease progression.

View Article and Find Full Text PDF

Intranasal oxytocin for apathy in people with frontotemporal dementia (FOXY): a multicentre, randomised, double-blind, placebo-controlled, adaptive, crossover, phase 2a/2b superiority trial.

Lancet Neurol

February 2025

Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada; Department of Cognitive Neurology, St Joseph's Health Care London, London, ON, Canada. Electronic address:

Background: No treatments exist for apathy in people with frontotemporal dementia. Previously, in a randomised double-blind, placebo-controlled, dose-finding study, intranasal oxytocin administration in people with frontotemporal dementia improved apathy ratings on the Neuropsychiatric Inventory over 1 week and, in a randomised, double-blind, placebo-controlled, crossover study, a single dose of 72 IU oxytocin increased blood-oxygen-level-dependent signal in limbic brain regions. We aimed to determine whether longer treatment with oxytocin improves apathy in people with frontotemporal dementia.

View Article and Find Full Text PDF

Synaptic dysfunction is a primary hallmark of both Alzheimer's and Parkinson's disease, leading to cognitive and behavioral decline. While alpha-synuclein, beta-amyloid, and tau are involved in the physiological functioning of synapses, their pathological aggregation has been linked to synaptopathology. The methodology for studying the small-soluble protein aggregates formed by these proteins is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!