The effect of pH on iron-containing complex coacervate core micelles [Fe(III)-C3Ms] is investigated in this paper. The Fe(III)-C3Ms are formed by mixing cationic poly(N-methyl-2-vinylpyridinium iodide)-b-poly(ethylene oxide) [P2MVP(41)-b-PEO(205)] and anionic iron coordination polymers [Fe(III)-L(2)EO(4)] at stoichiometric charge ratio. Light scattering and Cryo-TEM have been performed to study the variations of hydrodynamic radius and core structure with changing pH. The hydrodynamic radius of Fe(III)-C3Ms is determined mainly by the corona and does not change very much in a broad pH range. However, Cryo-TEM pictures and magnetic relaxation measurements indicate that the structure of the micellar cores changes upon changing the pH, with a more crystalline, elongated shape and lower relaxivity at high pH. We attribute this to the formation of mixed iron complexes in the core, involving both the bis-ligand and hydroxide ions. These complexes are stabilized toward precipitation by the diblock copolymer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la203449c | DOI Listing |
J Am Chem Soc
January 2025
Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
Complex coacervation is a form of liquid-liquid phase separation, whereby two types of macromolecules, usually bearing opposite net charges, self-assemble into dense microdroplets driven by weak molecular interactions. Peptide-based coacervates have recently emerged as promising carriers to deliver large macromolecules (nucleic acids, proteins and complex thereof) inside cells. Thus, it is essential to understand their assembly/disassembly mechanisms at the molecular level in order to tune the thermodynamics of coacervates formation and the kinetics of cargo release upon entering the cell.
View Article and Find Full Text PDFPharmaceutics
January 2025
Center for Pharmacy, University of Bergen, 5020 Bergen, Norway.
Polymyxin E (PME), a polymyxin antibiotic, serves as a final resort against antibiotic resistance. Nephrotoxicity is the primary concern when employing PME. To alleviate this issue, researchers have explored strategies including dosing adjustments and innovative formulations.
View Article and Find Full Text PDFFoods
January 2025
College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
Deer oil (DO) is a potentially beneficial functional oil; however, its sensitivity to environmental factors (e.g., oxygen and heat), difficulty in transport, and unfavorable taste hinder practical use.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, PR China.
This study successfully developed a gelatin-sodium carboxymethyl cellulose-peach gum composite microcapsule system using the complex coacervation method. Optimal preparation conditions were determined by turbidity, complex condensate yield and encapsulation efficiency: the ratio of gelatin to sodium carboxymethyl cellulose was 7:1, the ratio of gelatin/sodium carboxymethyl cellulose to peach gum was 4:1, and the pH value was 4.2.
View Article and Find Full Text PDFGels
January 2025
School of Product Design, University of Canterbury, Christchurch 8041, New Zealand.
This study investigates the 3D extrusion printing of a carboxymethyl cellulose (CMC)-gelatin complex coacervate system. Various CMC-gelatin coacervate hydrogels were prepared and analyzed to achieve this goal. The impact of the CMC-gelatin ratio, pH, and total biopolymer concentration on coacervation formation and rheological properties was evaluated to characterize the printability of the samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!