Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Combining clinical and molecular data types may potentially improve prediction accuracy of a classifier. However, currently there is a shortage of effective and efficient statistical and bioinformatic tools for true integrative data analysis. Existing integrative classifiers have two main disadvantages: First, coarse combination may lead to subtle contributions of one data type to be overshadowed by more obvious contributions of the other. Second, the need to measure both data types for all patients may be both unpractical and (cost) inefficient.
Results: We introduce a novel classification method, a stepwise classifier, which takes advantage of the distinct classification power of clinical data and high-dimensional molecular data. We apply classification algorithms to two data types independently, starting with the traditional clinical risk factors. We only turn to relatively expensive molecular data when the uncertainty of prediction result from clinical data exceeds a predefined limit. Experimental results show that our approach is adaptive: the proportion of samples that needs to be re-classified using molecular data depends on how much we expect the predictive accuracy to increase when re-classifying those samples.
Conclusions: Our method renders a more cost-efficient classifier that is at least as good, and sometimes better, than one based on clinical or molecular data alone. Hence our approach is not just a classifier that minimizes a particular loss function. Instead, it aims to be cost-efficient by avoiding molecular tests for a potentially large subgroup of individuals; moreover, for these individuals a test result would be quickly available, which may lead to reduced waiting times (for diagnosis) and hence lower the patients distress. Stepwise classification is implemented in R-package stepwiseCM and available at the Bioconductor website.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3221726 | PMC |
http://dx.doi.org/10.1186/1471-2105-12-422 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!